Halder, P., & Manna, B. (2021). Large scale model testing to investigate the influence of granular cushion layer on the performance of disconnected piled raft system. Acta Geotechnica. <a href="https://doi.org/10.1007/s11440-020-01121-5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s11440-020-01121-5</a>
Rui, R., Han, J., Ye, Y., Chen, C., & Zhai, Y. (2020). Load Transfer Mechanisms of Granular Cushion between Column Foundation and Rigid Raft. International Journal of Geomechanics, 20(1), 04019139. <a href="https://doi.org/10.1061/(ASCE)GM.1943-5622.0001539" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1061/(ASCE)GM.1943-5622.0001539</a>
Jiang, W., & Liu, Y. (2018). Determination of neutral plane depth and pile-soil stress ratio of the rigid pile composite foundation. Rock and Soil Mechanics, 39(12), 4554–4560. <a href="https://doi.org/10.16285/j.rsm.2017.0812" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.16285/j.rsm.2017.0812</a>
Tradigo, F., Pisanò, F., & di Prisco, C. (2016). On the use of embedded pile elements for the numerical analysis of disconnected piled rafts. Computers and Geotechnics, 72, 89–99. <a href="https://doi.org/10.1016/j.compgeo.2015.11.005" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.compgeo.2015.11.005</a>
Wu, C., Guo, W., & Li, Y. (2016). Calculation of neutral surface depth and pile-soil stress ratio of rigid pile composite foundation considering influence of negative friction. Chinese Journal of Geotechnical Engineering, 38(2), 278–287. <a href="https://doi.org/10.11779/CJGE201602011" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.11779/CJGE201602011</a>
Zhang, E., Yu, L., & He, X. (2016). Analysis of Action Mechanism for Rigid Flexible Pile Composite Foundation. Revista Tecnica De La Facultad De Ingenieria Universidad Del Zulia, 39(11), 260–270. <a href="https://doi.org/10.21311/001.39.11.32" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.21311/001.39.11.32</a>
Guo, Y. C., Zhang, S. H., Shi, G., & Liu, N. (2011). Optimization Strategy of the Long-Short-Pile Composite Foundation Based on the Settlement Control. Advanced Materials Research, 243–249, 2429–2434. <a href="https://doi.org/10.4028/www.scientific.net/AMR.243-249.2429" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.4028/www.scientific.net/AMR.243-249.2429</a>
Lu, H., Gao, Q., Zhou, B., Wang, D., & Liang, M. (2015). Experimental Research on Bearing Capacity of Long-and-short Pile Composite Foundation. Chinese Journal of Underground Space and Engineering, 11, 56–63.
Li, L., Zhang, H., Xu, B., & Wang, Y. (2012). Optimization of excavation supporting structure considering lateral reinforcement effect of CFG composite foundation on soils. Chinese Journal of Geotechnical Engineering, 34, 500–506.
Wei, Y. (2018). Research on evolutionary mechanisms and calculation method of earth pressure against rigid retaining walls close to rigid composite foundation [PhD Dissertation]. Zhengzhou University.
Ji, Q. X., & Ge, X. S. (2013). The Research on the Influence of the Forms of Foundation on the Behavior of Adjacent Excavation Based on Building Materials. Advanced Materials Research, 788, 606–610. <a href="https://doi.org/10.4028/www.scientific.net/AMR.788.606" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.4028/www.scientific.net/AMR.788.606</a>
Li, L., Huang, J., & Ji, X. (2019). Lateral pressures on retaining wall of composite foundation in clayey soils. Chinese Journal of Geotechnical Engineering, 41(1), 89–92. <a href="https://doi.org/10.11779/CJGE2019S1023" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.11779/CJGE2019S1023</a>
Wang, G., & Yang, Y. (2013). Effect of cantilever soldier pile foundation excavation closing to an existing composite foundation. Journal of Central South University, 20(5), 1384–1396. <a href="https://doi.org/10.1007/s11771-013-1626-4" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s11771-013-1626-4</a>
Fu, Q., & Li, L. (2021). Vertical Load Transfer Behavior of Composite Foundation and Its Responses to Adjacent Excavation: Centrifuge Model Test. Geotechnical Testing Journal, 44(1), 20180237. <a href="https://doi.org/10.1520/GTJ20180237" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1520/GTJ20180237</a>
Uba Uge, B., & Guo, Y. (2020). Deep Foundation Pit Excavations Adjacent to Disconnected Piled Rafts: A Review on Risk Control Practice. Open Journal of Civil Engineering, 10(03), 270–300. <a href="https://doi.org/10.4236/ojce.2020.103023" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.4236/ojce.2020.103023</a>
Li, M., Qian, Y., Guo, Y., & Wei, Y. (2019). Study on Influence of retaining wall rotation on load distribution of rigid - pile composite foundation. Journal of Shenyang Jianzhu University (Natural Science), 35(4), 655–662.
Korff, M., Mair, R. J., & Van Tol, F. A. F. (2016). Pile-Soil Interaction and Settlement Effects Induced by Deep Excavations. Journal of Geotechnical and Geoenvironmental Engineering, 142(8), 04016034. <a href="https://doi.org/10.1061/(ASCE)GT.1943-5606.0001434" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1061/(ASCE)GT.1943-5606.0001434</a>
Li, M., & Zhao, J. (2018). Progress of Research Advance on the Model Tests on the Interaction Between New Constructions and Adjacent Existing Buildings. In D. Zhang & X. Huang (Eds.), Proceedings of GeoShanghai 2018 International Conference: Tunnelling and Underground Construction (pp. 536–547). Springer Singapore. <a href="https://doi.org/10.1007/978-981-13-0017-2_54" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/978-981-13-0017-2_54</a>
Mu, L., Chen, W., Huang, M., & Lu, Q. (2020). Hybrid Method for Predicting the Response of a Pile-Raft Foundation to Adjacent Braced Excavation. International Journal of Geomechanics, 20(4), 04020026. <a href="https://doi.org/10.1061/(ASCE)GM.1943-5622.0001627" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1061/(ASCE)GM.1943-5622.0001627</a>
Uge, B. U., & Cheng, G. Y. (2019). Research Progress on the influence of deep foundation pit excavation on adjacent pile foundation. Ninth International Conference on Advances in Civil, Structural and Mechanical Engineering CSM - 2019, 12–19. <a href="https://doi.org/10.15224/978-1-63248-182-5-03" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.15224/978-1-63248-182-5-03</a>
Liyanapathirana, D. S., & Nishanthan, R. (2016). Influence of deep excavation induced ground movements on adjacent piles. Tunnelling and Underground Space Technology, 52, 168–181. <a href="https://doi.org/10.1016/j.tust.2015.11.019" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.tust.2015.11.019</a>
Zhang, R., Zhang, W., & Goh, A. T. C. (2018). Numerical investigation of pile responses caused by adjacent braced excavation in soft clays. International Journal of Geotechnical Engineering, 1–15. <a href="https://doi.org/10.1080/19386362.2018.1515810" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/19386362.2018.1515810</a>
Shi, J., Wei, J., Ng, C. W. W., & Lu, H. (2019). Stress transfer mechanisms and settlement of a floating pile due to adjacent multi-propped deep excavation in dry sand. Computers and Geotechnics, 116, 103216. <a href="https://doi.org/10.1016/j.compgeo.2019.103216" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.compgeo.2019.103216</a>
Shakeel, M., & Ng, C. W. W. (2018). Settlement and load transfer mechanism of a pile group adjacent to a deep excavation in soft clay. Computers and Geotechnics, 96, 55–72. <a href="https://doi.org/10.1016/j.compgeo.2017.10.010" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.compgeo.2017.10.010</a>
Soomro, M. A., Mangnejo, D. A., Bhanbhro, R., Memon, N. A., & Memon, M. A. (2019). 3D finite element analysis of pile responses to adjacent excavation in soft clay: Effects of different excavation depths systems relative to a floating pile. Tunnelling and Underground Space Technology, 86, 138–155. <a href="https://doi.org/10.1016/j.tust.2019.01.012" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.tust.2019.01.012</a>
Ng, C. W. W., Shakeel, M., Wei, J., & Lin, S. (2021). Performance of Existing Piled Raft and Pile Group due to Adjacent Multipropped Excavation: 3D Centrifuge and Numerical Modeling. Journal of Geotechnical and Geoenvironmental Engineering, 147(4), 04021012. <a href="https://doi.org/10.1061/(ASCE)GT.1943-5606.0002501" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1061/(ASCE)GT.1943-5606.0002501</a>
Li, Z., Wang, L., Lu, Y., Li, W., & Wang, K. (2021). Effect of principal stress rotation on the stability of a roadway constructed in half-coal-rock stratum and its control technology. Arabian Journal of Geosciences, 14(4), 292. <a href="https://doi.org/10.1007/s12517-021-06623-4" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s12517-021-06623-4</a>
Choi, J., Koo, B., & Kim, T. (2015). Stiffness Degradation during Deep Excavation in Urban Area. Journal of the Korean Geo-Environmental Society, 16(2), 27–31. <a href="https://doi.org/10.14481/JKGES.2015.16.2.27" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.14481/JKGES.2015.16.2.27</a>
Cao, Y., Liu, Y., & Du, C. (2021). Analysis of Stress Path in the Whole Process of Foundation Pit Excavation and Heavy Lifting. IOP Conference Series: Earth and Environmental Science, 634(1), 012130. <a href="https://doi.org/10.1088/1755-1315/634/1/012130" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1088/1755-1315/634/1/012130</a>
Ying, H., Li, J., Xie, X., Zhu, K., & Zhou, J. (2012). Research on stress path during excavation considering rotation of principal stress axis. Rock and Soil Mechanics, 33(4), 1013–1017.
Ng, C. W. W. (1999). Stress Paths in Relation to Deep Excavations. Journal of Geotechnical and Geoenvironmental Engineering, 125(5), 357–363. <a href="https://doi.org/10.1061/(ASCE)1090-0241(1999)125:5(357)" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1061/(ASCE)1090-0241(1999)125:5(357)</a>
Hsieh, P.-G., & Ou, C.-Y. (2012). Analysis of deep excavations in clay under the undrained and plane strain condition with small strain characteristics. Journal of the Chinese Institute of Engineers, 35(5), 601–616. <a href="https://doi.org/10.1080/02533839.2012.679115" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/02533839.2012.679115</a>
Lim, A., & Ou, C.-Y. (2017). Stress paths in deep excavations under undrained conditions and its influence on deformation analysis. Tunnelling and Underground Space Technology, 63, 118–132. <a href="https://doi.org/10.1016/j.tust.2016.12.013" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.tust.2016.12.013</a>
Liu, L., Zhang, H., & Liu, J. (2018). Study on the Envelope of Stress Path During Deep Excavation. In W. Wu & H.-S. Yu (Eds.), Proceedings of China-Europe Conference on Geotechnical Engineering (pp. 377–380). Springer International Publishing. <a href="https://doi.org/10.1007/978-3-319-97112-4_84" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/978-3-319-97112-4_84</a>
Huang, M., Liu, X., Zhang, N., & Shen, Q. (2017). Calculation of foundation pit deformation caused by deep excavation considering influence of loading and unloading. Journal of Central South University, 24(9), 2164–2171. <a href="https://doi.org/10.1007/s11771-017-3625-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s11771-017-3625-3</a>
Saeedi Azizkandi, A., Rasouli, H., & Baziar, M. H. (2019). Load Sharing and Carrying Mechanism of Piles in Non-connected Pile Rafts Using a Numerical Approach. International Journal of Civil Engineering, 17(6), 793–808. <a href="https://doi.org/10.1007/s40999-018-0356-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s40999-018-0356-2</a>
Guo, Y., Lv, C., Hou, S., & Liu, Y. (2021). Experimental Study on the Pile-Soil Synergistic Mechanism of Composite Foundation with Rigid Long and Short Piles. Mathematical Problems in Engineering, 2021, 1–15. <a href="https://doi.org/10.1155/2021/6657116" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1155/2021/6657116</a>
Samanta, M., & Bhowmik, R. (2019). 3D numerical analysis of piled raft foundation in stone column improved soft soil. International Journal of Geotechnical Engineering, 13(5), 474–483. <a href="https://doi.org/10.1080/19386362.2017.1368139" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/19386362.2017.1368139</a>
Juang, C. H., Gong, W., Martin, J. R., & Chen, Q. (2018). Model selection in geological and geotechnical engineering in the face of uncertainty—Does a complex model always outperform a simple model? Engineering Geology, 242, 184–196. <a href="https://doi.org/10.1016/j.enggeo.2018.05.022" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.enggeo.2018.05.022</a>
Boroujeni, F. F., & Porhoseini, R. (2020). Effect of execution process on pile group-excavation interaction. International Journal of Geotechnical Engineering. <a href="https://doi.org/10.1080/19386362.2020.1778155" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/19386362.2020.1778155</a>
Miao, L. F., Goh, A. T. C., Wong, K. S., & Teh, C. I. (2006). Three-dimensional finite element analyses of passive pile behaviour. International Journal for Numerical and Analytical Methods in Geomechanics, 30(7), 599–613. <a href="https://doi.org/10.1002/nag.493" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/nag.493</a>
Yang, M., Dai, X., Zhang, M., & Luo, H. (2016). Experimental study on earth pressure of cohesionless soil with limited width behind retaining wall. Chinese Journal of Geotechnical Engineering, 38(1), 131–137. <a href="https://doi.org/10.11779/CJGE201601014" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.11779/CJGE201601014</a>
Horikoshi, K., & Randolph, M. F. (1997). On the definition of raft—Soil stiffness ratio for rectangular rafts. Géotechnique, 47(5), 1055–1061. <a href="https://doi.org/10.1680/geot.1997.47.5.1055" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1680/geot.1997.47.5.1055</a>
Fioravante, V. (2002). On the Shaft Friction Modelling of Non-Displacement Piles in Sand. SOILS AND FOUNDATIONS, 42(2), 23–33. <a href="https://doi.org/10.3208/sandf.42.2_23" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3208/sandf.42.2_23</a>
National standard of the people’s republic of China (JGJ 79—2012). (2012). Technical code for ground treatment of buildings. China Architecture & Building Press.
Yang, Y., & Yu, H.-S. (2013). A kinematic hardening soil model considering the principal stress rotation: MODEL THE PRINCIPAL STRESS ROTATION. International Journal for Numerical and Analytical Methods in Geomechanics, 37(13), 2106–2134. <a href="https://doi.org/10.1002/nag.2138" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/nag.2138</a>
Li, L., Huang, J., Fu, Q., Cheng, X., & Hu, F. (2017). Centrifuge experimental study of mechanical properties of composite foundation with different replacement rates under additional load. Rock and Soil Mechanics, 38, 131–139. <a href="https://doi.org/10.16285/j.rsm.2017.S1.015" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.16285/j.rsm.2017.S1.015</a>
Ge, X., Zhai, X., Xue, J., & Bai, X. (2011). Model test study of impact of pile length on long-short piles composite foundation. 2011 International Conference on Electric Technology and Civil Engineering (ICETCE), 2370–2374. <a href="https://doi.org/10.1109/ICETCE.2011.5775233" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1109/ICETCE.2011.5775233</a>
Hussien, M. N., Ramadan, E. H., Hussein, M. H., Senoon, A. A. A., & Karray, M. (2017). Load sharing ratio of pile-raft system in loose sand: An experimental investigation. International Journal of Geotechnical Engineering, 11(5), 524–529. <a href="https://doi.org/10.1080/19386362.2016.1236224" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/19386362.2016.1236224</a>
Pham, Q. N., Ohtsuka, S., Isobe, K., & Fukumoto, Y. (2019). Group effect on ultimate lateral resistance of piles against uniform ground movement. Soils and Foundations, 59(1), 27–40. <a href="https://doi.org/10.1016/j.sandf.2018.08.013" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.sandf.2018.08.013</a>
Guo, C., Xiao, S. W., & Chen, Z. L. (2012). Study of Low Strength Pile Composite Foundation Deformation & Stability Calculation Method. Applied Mechanics and Materials, 170–173, 545–556. <a href="https://doi.org/10.4028/www.scientific.net/AMM.170-173.545" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.4028/www.scientific.net/AMM.170-173.545</a>
Zhao, M., Zhang, L., & Yang, M. (2006). Settlement calculation for long-short composite piled raft foundation. Journal of Central South University of Technology, 13, 749–754. <a href="https://doi.org/10.1007/s11771−006−0026−4" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s11771−006−0026−4</a>
Do, N. V., Nghia, D. T., & Tu, P. Q. (2020). Stiffness of Soil in Excavation-Induced Deformation Analysis in Vietnam. In P. Duc Long & N. T. Dung (Eds.), Geotechnics for Sustainable Infrastructure Development (Vol. 62, pp. 351–354). Springer Singapore. <a href="https://doi.org/10.1007/978-981-15-2184-3_44" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/978-981-15-2184-3_44</a>
Boussetta, S., Bouassida, M., Dinh, A., Canou, J., & Dupla, J. (2012). Physical modeling of load transfer in reinforced soil by rigid inclusions. International Journal of Geotechnical Engineering, 6(3), 331–342. <a href="https://doi.org/10.3328/IJGE.2012.06.03.331-341" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3328/IJGE.2012.06.03.331-341</a>
Bui, P., Luo, Q., Zhang, L., & Zhang, M. (2009). Geotechnical Centrifuge Experiment Model on Analysis of Pile-Soil Load Share Ratio on Composite Foundation of High Strength Concrete Pile. International Conference on Transportation Engineering 2009, 3465–3470. <a href="https://doi.org/10.1061/41039(345)571" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1061/41039(345)571</a>
Tran, V. D., Richard, J.-J., & Hoang, T. (2019). Soft Soil Improvement Using Rigid Inclusions: Toward an Application for Transport Infrastructure Construction in Vietnam. In H. Khabbaz, H. Youn, & M. Bouassida (Eds.), New Prospects in Geotechnical Engineering Aspects of Civil Infrastructures (pp. 89–99). Springer International Publishing. <a href="https://doi.org/10.1007/978-3-319-95771-5_8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/978-3-319-95771-5_8</a>