Have a personal or library account? Click to login
Numerical study on stress paths in grounds reinforced with long and short CFG piles during adjacent rigid retaining wall movement Cover

Numerical study on stress paths in grounds reinforced with long and short CFG piles during adjacent rigid retaining wall movement

Open Access
|Mar 2022

References

  1. Poulos, H. G. (2016). Tall building foundations: Design methods and applications. Innovative Infrastructure Solutions, 1(1), 10. https://doi.org/10.1007/s41062-016-0010-2
  2. Uge, B. U., & Guo, Y.-C. (2020). CFG Pile Composite Foundation: Its Engineering Applications and Research Advances. Journal of Engineering, 2020, 1–26. https://doi.org/10.1155/2020/5343472
  3. Halder, P., & Manna, B. (2021). Large scale model testing to investigate the influence of granular cushion layer on the performance of disconnected piled raft system. Acta Geotechnica. https://doi.org/10.1007/s11440-020-01121-5
  4. Rui, R., Han, J., Ye, Y., Chen, C., & Zhai, Y. (2020). Load Transfer Mechanisms of Granular Cushion between Column Foundation and Rigid Raft. International Journal of Geomechanics, 20(1), 04019139. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001539
  5. Jiang, W., & Liu, Y. (2018). Determination of neutral plane depth and pile-soil stress ratio of the rigid pile composite foundation. Rock and Soil Mechanics, 39(12), 4554–4560. https://doi.org/10.16285/j.rsm.2017.0812
  6. Tradigo, F., Pisanò, F., & di Prisco, C. (2016). On the use of embedded pile elements for the numerical analysis of disconnected piled rafts. Computers and Geotechnics, 72, 89–99. https://doi.org/10.1016/j.compgeo.2015.11.005
  7. Wu, C., Guo, W., & Li, Y. (2016). Calculation of neutral surface depth and pile-soil stress ratio of rigid pile composite foundation considering influence of negative friction. Chinese Journal of Geotechnical Engineering, 38(2), 278–287. https://doi.org/10.11779/CJGE201602011
  8. Yan, F., & Huang, X. (2014). Experiment Research of Bearing Behavior on Lime-Soil Pile and CFG Pile Rigid-Flexible Pile Composite Subgrade. Ground Improvement and Geosynthetics, 40–48. https://doi.org/10.1061/9780784413401.004
  9. Zhang, E., Yu, L., & He, X. (2016). Analysis of Action Mechanism for Rigid Flexible Pile Composite Foundation. Revista Tecnica De La Facultad De Ingenieria Universidad Del Zulia, 39(11), 260–270. https://doi.org/10.21311/001.39.11.32
  10. Guo, Y. C., Zhang, S. H., Shi, G., & Liu, N. (2011). Optimization Strategy of the Long-Short-Pile Composite Foundation Based on the Settlement Control. Advanced Materials Research, 243–249, 2429–2434. https://doi.org/10.4028/www.scientific.net/AMR.243-249.2429
  11. Lu, H., Gao, Q., Zhou, B., Wang, D., & Liang, M. (2015). Experimental Research on Bearing Capacity of Long-and-short Pile Composite Foundation. Chinese Journal of Underground Space and Engineering, 11, 56–63.
  12. Li, L., Zhang, H., Xu, B., & Wang, Y. (2012). Optimization of excavation supporting structure considering lateral reinforcement effect of CFG composite foundation on soils. Chinese Journal of Geotechnical Engineering, 34, 500–506.
  13. Wei, Y. (2018). Research on evolutionary mechanisms and calculation method of earth pressure against rigid retaining walls close to rigid composite foundation [PhD Dissertation]. Zhengzhou University.
  14. Li, M., Qian, Y., Guo, Y., Wei, Y., Zhao, S., & Cui, X. (2019). Design of lateral soil pressure model test scheme for adjacent composite foundation. Mechanics in Engineering, 41(2), 157–163. https://doi.org/10.6052/1000-0879-18-418
  15. Li, L., Huang, J., & Han, B. (2018). Centrifugal Investigation of Excavation Adjacent to Existing Composite Foundation. Journal of Performance of Constructed Facilities, 32(4), 04018044. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001188
  16. Ji, Q. X., & Ge, X. S. (2013). The Research on the Influence of the Forms of Foundation on the Behavior of Adjacent Excavation Based on Building Materials. Advanced Materials Research, 788, 606–610. https://doi.org/10.4028/www.scientific.net/AMR.788.606
  17. Li, L., Huang, J., & Ji, X. (2019). Lateral pressures on retaining wall of composite foundation in clayey soils. Chinese Journal of Geotechnical Engineering, 41(1), 89–92. https://doi.org/10.11779/CJGE2019S1023
  18. Wang, G., & Yang, Y. (2013). Effect of cantilever soldier pile foundation excavation closing to an existing composite foundation. Journal of Central South University, 20(5), 1384–1396. https://doi.org/10.1007/s11771-013-1626-4
  19. Fu, Q., & Li, L. (2021). Vertical Load Transfer Behavior of Composite Foundation and Its Responses to Adjacent Excavation: Centrifuge Model Test. Geotechnical Testing Journal, 44(1), 20180237. https://doi.org/10.1520/GTJ20180237
  20. Uba Uge, B., & Guo, Y. (2020). Deep Foundation Pit Excavations Adjacent to Disconnected Piled Rafts: A Review on Risk Control Practice. Open Journal of Civil Engineering, 10(03), 270–300. https://doi.org/10.4236/ojce.2020.103023
  21. Li, M., Qian, Y., Guo, Y., & Wei, Y. (2019). Study on Influence of retaining wall rotation on load distribution of rigid - pile composite foundation. Journal of Shenyang Jianzhu University (Natural Science), 35(4), 655–662.
  22. Korff, M., Mair, R. J., & Van Tol, F. A. F. (2016). Pile-Soil Interaction and Settlement Effects Induced by Deep Excavations. Journal of Geotechnical and Geoenvironmental Engineering, 142(8), 04016034. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001434
  23. Li, M., & Zhao, J. (2018). Progress of Research Advance on the Model Tests on the Interaction Between New Constructions and Adjacent Existing Buildings. In D. Zhang & X. Huang (Eds.), Proceedings of GeoShanghai 2018 International Conference: Tunnelling and Underground Construction (pp. 536–547). Springer Singapore. https://doi.org/10.1007/978-981-13-0017-2_54
  24. Mu, L., Chen, W., Huang, M., & Lu, Q. (2020). Hybrid Method for Predicting the Response of a Pile-Raft Foundation to Adjacent Braced Excavation. International Journal of Geomechanics, 20(4), 04020026. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001627
  25. Uge, B. U., & Cheng, G. Y. (2019). Research Progress on the influence of deep foundation pit excavation on adjacent pile foundation. Ninth International Conference on Advances in Civil, Structural and Mechanical Engineering CSM - 2019, 12–19. https://doi.org/10.15224/978-1-63248-182-5-03
  26. Liyanapathirana, D. S., & Nishanthan, R. (2016). Influence of deep excavation induced ground movements on adjacent piles. Tunnelling and Underground Space Technology, 52, 168–181. https://doi.org/10.1016/j.tust.2015.11.019
  27. Liang, Y.-Y., Liu, N.-W., Yu, F., Gong, X.-N., & Chen, Y.-T. (2019). Prediction of Response of Existing Building Piles to Adjacent Deep Excavation in Soft Clay. Advances in Civil Engineering, 2019, 1–11. https://doi.org/10.1155/2019/8914708
  28. Zhang, R., Zhang, W., & Goh, A. T. C. (2018). Numerical investigation of pile responses caused by adjacent braced excavation in soft clays. International Journal of Geotechnical Engineering, 1–15. https://doi.org/10.1080/19386362.2018.1515810
  29. Shi, J., Wei, J., Ng, C. W. W., & Lu, H. (2019). Stress transfer mechanisms and settlement of a floating pile due to adjacent multi-propped deep excavation in dry sand. Computers and Geotechnics, 116, 103216. https://doi.org/10.1016/j.compgeo.2019.103216
  30. Shakeel, M., & Ng, C. W. W. (2018). Settlement and load transfer mechanism of a pile group adjacent to a deep excavation in soft clay. Computers and Geotechnics, 96, 55–72. https://doi.org/10.1016/j.compgeo.2017.10.010
  31. Soomro, M. A., Mangnejo, D. A., Bhanbhro, R., Memon, N. A., & Memon, M. A. (2019). 3D finite element analysis of pile responses to adjacent excavation in soft clay: Effects of different excavation depths systems relative to a floating pile. Tunnelling and Underground Space Technology, 86, 138–155. https://doi.org/10.1016/j.tust.2019.01.012
  32. Ng, C. W. W., Shakeel, M., Wei, J., & Lin, S. (2021). Performance of Existing Piled Raft and Pile Group due to Adjacent Multipropped Excavation: 3D Centrifuge and Numerical Modeling. Journal of Geotechnical and Geoenvironmental Engineering, 147(4), 04021012. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002501
  33. Li, Z., Wang, L., Lu, Y., Li, W., & Wang, K. (2021). Effect of principal stress rotation on the stability of a roadway constructed in half-coal-rock stratum and its control technology. Arabian Journal of Geosciences, 14(4), 292. https://doi.org/10.1007/s12517-021-06623-4
  34. Choi, J., Koo, B., & Kim, T. (2015). Stiffness Degradation during Deep Excavation in Urban Area. Journal of the Korean Geo-Environmental Society, 16(2), 27–31. https://doi.org/10.14481/JKGES.2015.16.2.27
  35. Cao, Y., Liu, Y., & Du, C. (2021). Analysis of Stress Path in the Whole Process of Foundation Pit Excavation and Heavy Lifting. IOP Conference Series: Earth and Environmental Science, 634(1), 012130. https://doi.org/10.1088/1755-1315/634/1/012130
  36. Ying, H., Li, J., Xie, X., Zhu, K., & Zhou, J. (2012). Research on stress path during excavation considering rotation of principal stress axis. Rock and Soil Mechanics, 33(4), 1013–1017.
  37. Ng, C. W. W. (1999). Stress Paths in Relation to Deep Excavations. Journal of Geotechnical and Geoenvironmental Engineering, 125(5), 357–363. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:5(357)
  38. Hsieh, P.-G., & Ou, C.-Y. (2012). Analysis of deep excavations in clay under the undrained and plane strain condition with small strain characteristics. Journal of the Chinese Institute of Engineers, 35(5), 601–616. https://doi.org/10.1080/02533839.2012.679115
  39. Ni, P., Mei, G., Zhao, Y., & Chen, H. (2018). Plane strain evaluation of stress paths for supported excavations under lateral loading and unloading. Soils and Foundations, 58(1), 146–159. https://doi.org/10.1016/j.sandf.2017.12.003
  40. Lim, A., & Ou, C.-Y. (2017). Stress paths in deep excavations under undrained conditions and its influence on deformation analysis. Tunnelling and Underground Space Technology, 63, 118–132. https://doi.org/10.1016/j.tust.2016.12.013
  41. Liu, L., Zhang, H., & Liu, J. (2018). Study on the Envelope of Stress Path During Deep Excavation. In W. Wu & H.-S. Yu (Eds.), Proceedings of China-Europe Conference on Geotechnical Engineering (pp. 377–380). Springer International Publishing. https://doi.org/10.1007/978-3-319-97112-4_84
  42. Huang, M., Liu, X., Zhang, N., & Shen, Q. (2017). Calculation of foundation pit deformation caused by deep excavation considering influence of loading and unloading. Journal of Central South University, 24(9), 2164–2171. https://doi.org/10.1007/s11771-017-3625-3
  43. Saeedi Azizkandi, A., Rasouli, H., & Baziar, M. H. (2019). Load Sharing and Carrying Mechanism of Piles in Non-connected Pile Rafts Using a Numerical Approach. International Journal of Civil Engineering, 17(6), 793–808. https://doi.org/10.1007/s40999-018-0356-2
  44. Guo, Y., Lv, C., Hou, S., & Liu, Y. (2021). Experimental Study on the Pile-Soil Synergistic Mechanism of Composite Foundation with Rigid Long and Short Piles. Mathematical Problems in Engineering, 2021, 1–15. https://doi.org/10.1155/2021/6657116
  45. Samanta, M., & Bhowmik, R. (2019). 3D numerical analysis of piled raft foundation in stone column improved soft soil. International Journal of Geotechnical Engineering, 13(5), 474–483. https://doi.org/10.1080/19386362.2017.1368139
  46. Juang, C. H., Gong, W., Martin, J. R., & Chen, Q. (2018). Model selection in geological and geotechnical engineering in the face of uncertainty—Does a complex model always outperform a simple model? Engineering Geology, 242, 184–196. https://doi.org/10.1016/j.enggeo.2018.05.022
  47. Boroujeni, F. F., & Porhoseini, R. (2020). Effect of execution process on pile group-excavation interaction. International Journal of Geotechnical Engineering. https://doi.org/10.1080/19386362.2020.1778155
  48. Miao, L. F., Goh, A. T. C., Wong, K. S., & Teh, C. I. (2006). Three-dimensional finite element analyses of passive pile behaviour. International Journal for Numerical and Analytical Methods in Geomechanics, 30(7), 599–613. https://doi.org/10.1002/nag.493
  49. Yang, M., Dai, X., Zhang, M., & Luo, H. (2016). Experimental study on earth pressure of cohesionless soil with limited width behind retaining wall. Chinese Journal of Geotechnical Engineering, 38(1), 131–137. https://doi.org/10.11779/CJGE201601014
  50. Horikoshi, K., & Randolph, M. F. (1997). On the definition of raft—Soil stiffness ratio for rectangular rafts. Géotechnique, 47(5), 1055–1061. https://doi.org/10.1680/geot.1997.47.5.1055
  51. Fioravante, V. (2002). On the Shaft Friction Modelling of Non-Displacement Piles in Sand. SOILS AND FOUNDATIONS, 42(2), 23–33. https://doi.org/10.3208/sandf.42.2_23
  52. National standard of the people’s republic of China (JGJ 79—2012). (2012). Technical code for ground treatment of buildings. China Architecture & Building Press.
  53. Ou, C.-Y., Teng, F., & Li, C.-W. (2020). A simplified estimation of excavation-induced ground movements for adjacent building damage potential assessment. Tunnelling and Underground Space Technology, 106, 103561. https://doi.org/10.1016/j.tust.2020.103561
  54. Yang, Y., & Yu, H.-S. (2013). A kinematic hardening soil model considering the principal stress rotation: MODEL THE PRINCIPAL STRESS ROTATION. International Journal for Numerical and Analytical Methods in Geomechanics, 37(13), 2106–2134. https://doi.org/10.1002/nag.2138
  55. Li, L., Huang, J., Fu, Q., Cheng, X., & Hu, F. (2017). Centrifuge experimental study of mechanical properties of composite foundation with different replacement rates under additional load. Rock and Soil Mechanics, 38, 131–139. https://doi.org/10.16285/j.rsm.2017.S1.015
  56. Boussetta, S., Bouassida, M., & Zouabi, M. (2016). Assessment of observed behavior of soil reinforced by rigid inclusions. Innovative Infrastructure Solutions, 1(1), 27. https://doi.org/10.1007/s41062-016-0027-6
  57. Ge, X., Zhai, X., Xue, J., & Bai, X. (2011). Model test study of impact of pile length on long-short piles composite foundation. 2011 International Conference on Electric Technology and Civil Engineering (ICETCE), 2370–2374. https://doi.org/10.1109/ICETCE.2011.5775233
  58. Zhang, Q.-Q., Liu, S.-W., Feng, R.-F., Qian, J.-G., & Cui, C.-Y. (2020). Finite element prediction on the response of non-uniformly arranged pile groups considering progressive failure of pile-soil system. Frontiers of Structural and Civil Engineering, 14(4), 961–982. https://doi.org/10.1007/s11709-020-0632-5
  59. Hussien, M. N., Ramadan, E. H., Hussein, M. H., Senoon, A. A. A., & Karray, M. (2017). Load sharing ratio of pile-raft system in loose sand: An experimental investigation. International Journal of Geotechnical Engineering, 11(5), 524–529. https://doi.org/10.1080/19386362.2016.1236224
  60. Pham, Q. N., Ohtsuka, S., Isobe, K., & Fukumoto, Y. (2019). Group effect on ultimate lateral resistance of piles against uniform ground movement. Soils and Foundations, 59(1), 27–40. https://doi.org/10.1016/j.sandf.2018.08.013
  61. Das, B. M. (2014). Advanced soil mechanics (Fourth). CRC Press.
  62. Guo, C., Xiao, S. W., & Chen, Z. L. (2012). Study of Low Strength Pile Composite Foundation Deformation & Stability Calculation Method. Applied Mechanics and Materials, 170–173, 545–556. https://doi.org/10.4028/www.scientific.net/AMM.170-173.545
  63. Zhao, M., Zhang, L., & Yang, M. (2006). Settlement calculation for long-short composite piled raft foundation. Journal of Central South University of Technology, 13, 749–754. https://doi.org/10.1007/s11771−006−0026−4
  64. Niu, X., Yao, Y., Sun, Y., He, Y., & Zhang, H. (2018). 3D Numerical Analysis of Synergetic Interaction between High-Rise Building Basement and CFG Piles Foundation. Applied Sciences, 8(11), 2040. https://doi.org/10.3390/app8112040
  65. Do, N. V., Nghia, D. T., & Tu, P. Q. (2020). Stiffness of Soil in Excavation-Induced Deformation Analysis in Vietnam. In P. Duc Long & N. T. Dung (Eds.), Geotechnics for Sustainable Infrastructure Development (Vol. 62, pp. 351–354). Springer Singapore. https://doi.org/10.1007/978-981-15-2184-3_44
  66. Cudny, M., & Popielski, P. (2010). Analysis of excavation-induced deformation with different soil sodels. Task Quarterly, 14(4), 339–362.
  67. Boussetta, S., Bouassida, M., Dinh, A., Canou, J., & Dupla, J. (2012). Physical modeling of load transfer in reinforced soil by rigid inclusions. International Journal of Geotechnical Engineering, 6(3), 331–342. https://doi.org/10.3328/IJGE.2012.06.03.331-341
  68. Bui, P., Luo, Q., Zhang, L., & Zhang, M. (2009). Geotechnical Centrifuge Experiment Model on Analysis of Pile-Soil Load Share Ratio on Composite Foundation of High Strength Concrete Pile. International Conference on Transportation Engineering 2009, 3465–3470. https://doi.org/10.1061/41039(345)571
  69. Tran, V. D., Richard, J.-J., & Hoang, T. (2019). Soft Soil Improvement Using Rigid Inclusions: Toward an Application for Transport Infrastructure Construction in Vietnam. In H. Khabbaz, H. Youn, & M. Bouassida (Eds.), New Prospects in Geotechnical Engineering Aspects of Civil Infrastructures (pp. 89–99). Springer International Publishing. https://doi.org/10.1007/978-3-319-95771-5_8
DOI: https://doi.org/10.2478/sgem-2021-0029 | Journal eISSN: 2083-831X | Journal ISSN: 0137-6365
Language: English
Page range: 38 - 52
Submitted on: Apr 19, 2021
Accepted on: Oct 19, 2021
Published on: Mar 31, 2022
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Bantayehu Uba Uge, Yuancheng Guo, Yunlong Liu, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution 4.0 License.