Have a personal or library account? Click to login
An iterative algorithm for random upper bound kinematical analysis Cover

An iterative algorithm for random upper bound kinematical analysis

Open Access
|Nov 2021

References

  1. Au SK, Beck L. Estimation of small failure probabilities in high dimensions by subset simulation. Probabilistic Engineering Mechanics; 2001; 16:263–277.
  2. Bagińska I, Kawa M, Janecki W. Estimation of spatial variability of lignite mine dumping ground soil properties using CPTu results. Studia Geotechnica et Mechanica; 2016; 38(1), 3–13.
  3. Bagińska I, Kawa M, Łydżba D, Identification of soil types and their arrangement in overburden heaps using the deconvolution approach and CPTu test results. Engineering Geology 276, 105759
  4. Ching J, Wu TJ, Stuedlein AW, Bong T. Estimating horizontal scale of fluctuation with limited CPT soundings. Geoscience Frontiers; 2018; Vol. 9, 6, 1597–1608. <a href="https://doi.org/10.1016/j.gsf.2017.11.008" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.gsf.2017.11.008</a>
  5. Chwała M. (2019). Undrained bearing capacity of spatially random soil for rectangular footings. Soils and Foundations, Volume 59, Issue 5, 1508–1521. <a href="https://doi.org/10.1016/j.sandf.2019.07.005" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.sandf.2019.07.005</a>
  6. Chwała M, Puła W (2020). Evaluation of shallow foundation bearing capacity in the case of a two-layered soil and spatial variability in soil strength parameters. PLoS ONE 15(4): e0231992. <a href="https://doi.org/10.1371/journal.pone.0231992" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1371/journal.pone.0231992</a>
  7. Chwała M., (2020). On determining the undrained bearing capacity coefficients of variation for foundations embedded on spatially variable soil. Studia Geotechnica et Mechanica, 2020, 42(2); 125–136. <a href="https://doi.org/10.2478/sgem-2019-0037" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/sgem-2019-0037</a>
  8. Chwała M., (2020). Soil sounding location optimisation for spatially variable soil. Geotechnique Letters 10, 1–10. <a href="https://doi.org/10.1680/jgele.20.00012" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1680/jgele.20.00012</a>
  9. Chwała M., (2021). Optimal placement of two soil soundings for rectangular footings. Journal of Rock Mechanics and Geotechnical Engineering, Volume 13, Issue 3, 603–611 <a href="https://doi.org/10.1016/j.jrmge.2021.01.007" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jrmge.2021.01.007</a>
  10. Chwała M, Kawa M, (2021). Random failure mechanism method for working platform bearing capacity assessment with a linear trend in undrained shear strength. Journal of Rock Mechanics and Geotechnical Engineering. <a href="https://doi.org/10.1016/j.jrmge.2021.06.004" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jrmge.2021.06.004</a>
  11. Fenton GA, Griffiths DV, (2003). Bearing-capacity prediction of spatially random c ϕ soils. Canadian geotechnical journal, 40(1), 54–65. <a href="https://doi.org/10.1139/t02-086" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1139/t02-086</a>
  12. Fenton GA, Griffiths DV. Risk assessment in geotechnical engineering. Wiley; 2008.
  13. Huang J, Lyamin AV, Griffiths DV, Sloan SW, Krabbenhoft K, Fenton GA. (2013). Undrained bearing capacity of spatially random clays by finite elements and limit analysis. Proceedings of the 18th ICSMGE; Paris 2013;731–734.
  14. Ferreira V, Panagopulos T, Andrade R, Guerrero C, Loures L. (2015). Spatial variability of soil properties and soil erodibility in the Alqueva reservoir watershed. Soild Earth, 6, 383–392.
  15. Ghanem R, Brzakała W, (1996). Stochastic Finite-Element Analysis of Soil Layers with Random Interface. Journal of Engineering Mechanics, Vol. 122, Issue 4 (April 1996), <a href="https://doi.org/10.1061/(ASCE)0733-9399(1996)122:4(361)" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1061/(ASCE)0733-9399(1996)122:4(361)</a>
  16. Griffiths DV, Fenton GA, Manoharan N, (2002). Bearing Capacity of Rough Rigid Strip Footing on Cohesive Soil: Probabilistic Study. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(9): 743–755. <a href="https://doi.org/10.1061/(ASCE)1090-0241(2002)128:9(743)" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1061/(ASCE)1090-0241(2002)128:9(743)</a>
  17. Griffiths DV, Fenton GA, (2004). Probabilistic slope stability analysis by finite elements Journal of Geotechnical and Geoenvironmental Engineering, 130 (5) (2004), pp. 507–518, <a href="https://doi.org/10.1061/(ASCE)1090-0241(2004)130:5(507)" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1061/(ASCE)1090-0241(2004)130:5(507)</a>
  18. Halder K, Chakraborty D, (2019). Probabilistic bearing capacity of strip footing on reinforced soil slope. Computers and Geotechnics, 2019, 116: 103213. <a href="https://doi.org/10.1016/j.compgeo.2019.103213" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.compgeo.2019.103213</a>
  19. Halder K, Chakraborty D, (2020). Influence of soil spatial variability on the response of strip footing on geocell-reinforced slope. Computers and Geotechnics, Volume 122, 2020, 103533, <a href="https://doi.org/10.1016/j.compgeo.2020.103533." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.compgeo.2020.103533.</a>
  20. Horn RA, Johnson CR. Matrix Analysis. Cambridge University Press 1985.
  21. Juan C. Viviescas, Álvaro J. Mattos & Juan P. Osorio (2020) Uncertainty quantification in the bearing capacity estimation for shallow foundations in sandy soils, Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, DOI: <a href="https://doi.org/10.1080/17499518.2020.1753782" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/17499518.2020.1753782</a>
  22. Kasama K, Whittle AJ, (2011). Bearing Capacity of Spatially Random Cohesive Soil Using Numerical Limit Analyses. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(11): 989–996. <a href="https://doi.org/10.1061/(ASCE)GT.1943-5606.0000531" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1061/(ASCE)GT.1943-5606.0000531</a>
  23. Kawa M, Bagińska I, Wyjadłowski M. Reliability analysis of sheet pile wall in spatially variable soil including CPTu test results. Archives of Civil and Mechanical Engineering; 2019; 19(2):598–613.
  24. Kawa M, Puła W. (2020). 3D bearing capacity probabilistic analyses of footings on spatially variable c–ϕ soil. Acta Geotechnica (2020) 15:1453–1466. <a href="https://doi.org/10.1007/s11440-019-00853-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s11440-019-00853-3</a>
  25. Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by Simulated Annealing. Science; 1983; 220, 671–680.
  26. Kirkpatrick S. Optimization by Simulated Annealing: Quantitative Studies. Journal of Statistical Physics; 1984; Vol. 34, Nos. 5/6.
  27. Li Y, Fenton GA, Hicks MA, Xu N, (2021). Probabilistic Bearing Capacity Prediction of Square Footings on 3D Spatially Varying Cohesive Soils. Journal of Geotechnical and Geoenvironmental Engineering 147 (6), 04021035
  28. Li J, Wu C, Luo W, Sun L, White DJ, (2021). An extended Prandtl solution for analytical modelling of the bearing capacity of a shallow foundation on a spatially variable undrained clay. Géotechnique, <a href="https://doi.org/10.1680/jgeot.20.P.118" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1680/jgeot.20.P.118</a>
  29. Phoon KK, Kulhawy FH, (1999). Characterization of geotechnical variability. Canadian Geotechnical Journal, 36(4), 612–624. <a href="https://doi.org/10.1139/t99-038" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1139/t99-038</a>
  30. Pieczyńska-Kozłowska JM, Puła W, Vessia G. A collection of fluctuation scale values and autocorrelation functions of fine deposits in Emilia Romagna plain (Italy) Geo-Risk 2017 in ASCE Geotechnical Special Publication, 284 (2017), pp. 290–299
  31. Pieczyńska-Kozłowska JM, Puła W, Chwała M. Search for the worst-case correlation length in the bearing capacity probability of failure analyses. Geo-Risk 2017 in ASCE Geotechnical Special Publication, GSP 283, 534–544.
  32. Pramanik, R., Baidya, D.K. & Dhang, N, (2020). Reliability analysis for bearing capacity of surface strip footing using fuzzy finite element method. Geomechanics and Geoengineering: An International Journal, 2020, 15(1): 29–41. <a href="https://doi.org/10.1080/17486025.2019.1601268" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/17486025.2019.1601268</a>
  33. Pramanik, R., Baidya, D.K. & Dhang, N, (2021). Reliability assessment of three-dimensional bearing capacity of shallow foundation using fuzzy set theory. Front. Struct. Civ. Eng. (2021). <a href="https://doi.org/10.1007/s11709-021-0698-8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s11709-021-0698-8</a>
  34. Puła W. Applications of structural reliability theory to foundations safety evaluation. Wrocław 2004; Wroclaw University of Technology Press [in Polish].
  35. Puła W. On some aspects of reliability computations in bearing capacity of shallow foundations. In: Griffiths DV, Fenton Gordon A, editors. Puła in: probabilistic methods in geotechnical engineering. CISM courses and lectures, Wien, New York: Springer; 2007; No. 491, 127–45.
  36. Puła W, Chwała M, On spatial averaging along random slip lines in the reliability computations of shallow strip foundations. Computers and Geotechnics; 2015; 68, 128–136.
  37. Puła W, Chwała M. Random bearing capacity evaluation of shallow foundations for asymmetrical failure mechanisms with spatial averaging and inclusion of soil self-weight. Computers and Geotechnics; 2018; 101, 176–195.
  38. Rainer J, Szabowicz H, (2020). Analysis of underground stratification based on CPTu profiles using high-pass spatial filter. Studia Geotechnica et Mechanica. 2020, s. 1–11.
  39. Simoes JT, Neves LC, Antao AN, Guerra NMC. Probabilistic analysis of bearing capacity of shallow foundations using three-dimensional limit analyses. International Journal of Computational Methods; 2014; Vol. 11, No. 02, 1342008-1-20.
  40. Shield RT, Drucker DC. The application of limit analysis to punch-indentation problems. Journal of Applied Mechanics; 1953; 20, 453–460.
  41. Srivastava AGL, Sivakumar BGL, Haldar S, (2010). Influence of spatial variability of permeability property on steady state seepage flow and slope stability analysis. Engineering Geology, 2010, 110(3–4): 93–101. <a href="https://doi.org/10.1016/j.enggeo.2009.11.006" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.enggeo.2009.11.006</a>
  42. Stuedlein AW, Kramer SL, Arduino P, Holtz RD, (2012). Geotechnical Characterization and Random Field Modeling of Desiccated Clay. Journal of Geotechnical and Geoenvironmental Engineering, 138(11), 1301–1313. <a href="https://doi.org/10.1061/(ASCE)GT.1943-5606.0000723" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1061/(ASCE)GT.1943-5606.0000723</a>
  43. The MathWorks. MATLAB R2017b; 2017; Natick.
  44. Vanmarcke E.H. Probabilistic modelling of soil profiles. Journal of the Geotechnical Engineering Division; 1977; Vol. 103, 11, 1227–46.
  45. Vanmarcke EH. Reliability of earth slopes. Journal of the Geotechnical Engineering Division; 1977; Vol. 103, 11, 1247–65.
  46. Vanmarcke E.H. Random fields – analysis and synthesis. Cambridge 1983: MIT Press.
  47. Viviescas J.C, Griffiths DV, Osorio JP, (2021). Geological influence on the spatial variability of soils. International Journal of Geotechnical Engineering, 00(00), 1–9. <a href="https://doi.org/10.1080/19386362.2021.1888509" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/19386362.2021.1888509</a>
  48. Zhu D, Griffiths DV, Huang J, Fenton GA, (2017). Probabilistic stability analyses of undrained slopes with linearly increasing mean strength. Géotechnique, 2017, 67(8): 733–746. <a href="https://doi.org/10.1680/jgeot.16.P.223" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1680/jgeot.16.P.223</a>
  49. Żyliński K, Korzec A, Winkelmann K, Górski J., (2020). Random Field Model of Foundations at the Example of Continuous Footing. AIP Conf. Proc. 2239, 020052-1–020052-11; <a href="https://doi.org/10.1063/5.0007811" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1063/5.0007811</a>
DOI: https://doi.org/10.2478/sgem-2021-0027 | Journal eISSN: 2083-831X | Journal ISSN: 0137-6365
Language: English
Page range: 13 - 25
Submitted on: May 29, 2021
Accepted on: Sep 27, 2021
Published on: Nov 10, 2021
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2021 Marcin Chwała, published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 License.