Benahchilif, s. (2016). Vers une mise en place d’une approche fiabiliste pour l’estimation du potentiel de liquéfaction. Thèse de Doctorat, Université Abou Bakr belkaid Tlemcen. Algerie.
Benahchilif, s., Zendagui, J. (2016). Assessement of liquefaction in Boumerdes (Algeria) using reliability analysis. International Journal of GEOMATE, June, Vol. 10, Issue 22. 2002–2006.
Blanchin, R., Chilbs, J. P., and Deverly, F. (1989). Some Applications of Geostatistics to Civil Engineering. M. Armstrong (ed.), Geostatistics (Vol. 2): Kluwer, Dordrecht, Netherlands, 785–795.
Bodaghabadi, B. (2018). Is it necessarily a normally distributed data for kriging? A case study: soil salinity map of Ghahab area, central Iran. Desert 23-2, 285–294.
Cardenas, G., Malherbe, L. (2003). Evaluation des incertitudes associées aux méthodes géostatistiques. Rapport LCSQA. Laboratoire central de surveillance de la qualité de l’air. L’institut national de l’environnement industriel et des risques (INERIS). France.
Despagne, W. (2006). Méthodes géostatistique pour l’interpolation et la modélisation en 2D/3D des données spatiales. Rapport de stage. université de Bretagne sud.
Iwasaki, T., Tatsuoka, F., Tokida, K., Yasuda, S. (1978). A practical method for assessing soil liquefaction potential based on case studies at various sites in Japan. In: Proceedings of the 2nd international conference on Microzonation, 885–896.
Iwasaki, T., Tokida, K., Tatsuoka, F., Watanabe, S., Yasuda, S., Sato, H. (1982). Microzonation for soil liquefaction potential using simplified methods. Proceedings of 3rd International Earthquake Microzonation Conference, Seattle, 1319–1330.
Johari, A., Khodaparast, A.R. (2014). Analytical reliability assessment of liquefaction potential based on cone penetration test results. Scientia Iranica. Transactions A: Civil Engineering. 21(5), 1549–1565.
Johari, A., Khodaparast, A.R., Javadi, A.A (2018). An Analytical Approach to Probabilistic Modeling of Liquefaction Based on Shear Wave Velocity. Iranian Journal of Science and Technology, Transactions of Civil Engineering. 43 (Suppl 1):S263–S275
Johari, A., M. Khani, M., M.A. Hadianfard, M.A., JavidSharifi, B. (2020). System reliability analysis for seismic site classification based on sequential Gaussian co-simulation: A case study in Shiraz, Iran, Soil Dynamics and Earthquake Engineering 137.
Matheron, G. (1962). Traité de géostatistique appliquée, Tome I. Mémoires du Bureau de Recherches Géologiques et Minières, No. 14. Editions Technip, Paris.
Matheron, G. (1970). La théorie des variables régionalisées, et ses applications. Les cahiers du centre de morphologie mathématique de Fontainebleau, Fascicule 5. Ecole des mines de paris, Fontainebleau.
Negreiros, J., Painho, M. Aguilar, F., Aguilar, M.(2010). Geographical Information Systems Principles of Ordinary Kriging Interpolator. Journal of Applied Sciences, 10; 852–867.
Pokhrel, R.M., Kuwano, J., Tachibana, S. (2013). A kriging method of interpolation used to map liquefaction potential over alluvial ground, Engineering Geology, Vol. 152, 26–37.
Sonmez, H., (2003). Modification of the liquefaction potential index and liquefaction susceptibility mapping for a liquefactionprone area (Inegol, Turkey). Environ. Geol., 44, 862–871.
Tang, H., and Chen, G. X. (2007). Probabilistic evaluation of earthquake-induced liquefaction potential for large region site based on two-dimensional gis technique. ISGSR First International Symposium on Geotechnical Safety & Risk Oct. 18~19, 2007. Shanghai. Tongji University, China, 323–332.
Youd, T.L., Idriss, I.M., R.D., Andrus, I., Arango, G., Castro, J.T., Christian, and al. (2001). Liquefaction resistance of soils summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. J Geotech Geoenviron Eng. 127(4), 297–213.