References
- Thepot O., International Comparison of Methods for the Design of Sewer Linings, 3R International 8–9, Vulcan-Verlag GmbH, Essen, 2004
- Falter B.: Structural design of linings, Proceedings of the International Conference on Underground Infrastructure Research, Kitchener, Ontario, Balkema publisher, 2001, s. 49–58
- ASTM F 1216, Standard practice for rehabilitation of existing pipelines and conduits by the inversion and curing of a resin – impregnated tube, ASTM Designation, Philadelphia, 1998.
- RERAU. Project national Réhabilitation des réseaux d’assainissement urbains. Reconstructuration des collecteurs visitables, Guide technique Tome 1, 2002.
- WRc/WAA 4th ed. Sewerage Rehabilitation Manual (SRM), UK Water Research Centre/Water Authorities Association, Swindon, 2001.
- DWA-A 143-2: Sanierung von Entwässerungssystemen außerhalb von Gebäuden Teil 2: Statische Berechnung zur Sanierung von Abwasserleitungen und -kanälen mit Lining - und Montageverfahren, Lipiec 2015
- Abel T., Laboratory tests and analysis of CIPP epoxy-resin internal liners used in pipelines – part I: comparison of tests and engineering calculations, Studia Geotechnica et Mechanica, accepted for publication on 31.01.2021
- Rusiński E.: The Finite Element Method, Wydawnictwo Komunikacji i Łączności. Warsaw, 1994.
- PN-EN ISO 178:2019-06 - Plastics — Determination of flexural properties
- GWT manual, 2000. Germann Instruments, Denmark.
- Timoshenko S.P., Gere J.M.: Theory of Elastic Stability. Mc Graw – Hill. New York, 1961.
- Glock D.: Überkritisches Verhalten eines starr ummantelten Kreisrohres bei Wasserdruck von außen und Temperaturerhöhung, Der Stahlbau 46, 1977, s. 212–217.
- Madryas C., Szot A., Structural sensitivity of circular sewer liners to geometrical imperfections, Tunnelling and Underground Space Technology 18 (2003) 421–434, Elsevier Science Ltd. 2003
- Law T.C.M., Moore I. D., Numerical modeling of tight fitting flexible liner in damaged sewer under earth loads, Tunnelling and Underground Space Technology 22 (2007) 655–665, Elsevier Science Ltd. 2007
- Abel. T., Changes in strength parameters of pipelines rehabilitated with close-fit Trolining liners – Numerical analysis based on laboratory tests, Archives of Civil and Mechanical Engineering 16 (2016) 30 – 40, Wrocław, 2015
- Zhao W. Z., Hall D., 3D Modeling of pipe liners with thickness variations, International No-Dig Show 2004, New Orleans, 2004
- Jaganathan A., Allouche E., Baumert M., Experimental and numerical evaluation of the impact of folds on the pressure rating of CIPP liners, Tunnelling and Underground Space Technology 22 (2007) 666–678, Elsevier Science Ltd. 2007
- Khademi-Zahedi R., Shishesaz M., Application of a finite element method to stress distribution in buried patch repaired polyethylene gas pipes, Underground Space 4 (2019) 48–58, Elsevier Science Ltd. 2019
- Shou K.J., Chen B.C., Numerical analysis of the mechanical behaviors of pressurized underground pipelines rehabilitated by cured-in-place-pipe method, Tunnelling and Underground Space Technology 71 (2018) 544–554, Elsevier Science Ltd. 2018
- Shou K.J., Huang C.C., Numerical analysis of straight and curved underground pipeline performance after rehabilitation by cured-in-place method, Underground Space 5 (2020) 30–42, Elsevier B.V., 2020
- Arumugam T., Karuppanan S., Ovinis M., Finite element analyses of corroded pipeline with single defect subjected to internal pressure and axial compressive stress, Marine Structures 72 (2020) 102746, Elsevier Science Ltd. 2020
- Boot J.C., Elastic buckling of cylindrical pipe linings with small imperfections subject to external pressure, Trenchless Technology Research, VOL. 12, No. 1–2, pp. 3–15, Elsevier Science Ltd. 1998, England
- Thépot O.: A new design method for non-circular sewer linings. Trenchless Technology Research 15, 2000, s. 25–41.
- Abaqus - Wrocław Center for Networking and Supercomputing (
http://www.wcss.pl )