Have a personal or library account? Click to login
Numerical Modeling of Wall Pressure in Silo with and Without Insert Cover

Numerical Modeling of Wall Pressure in Silo with and Without Insert

Open Access
|Oct 2020

References

  1. Rotter, J.M. 2001, “Guide for The Economic Design Of Circular Metal Silos”, Spon Press, London.
  2. Schulze, D., 2008. Powders and Bulk Solids – Behavior, Characterization Storage and Flow. Springer, Berlin.
  3. Strusch, J. and Schwedes, J. 1998. “Wall stress distributions in silos with inserts, and loads on inserts”, in: Brown, C.J., Nielsen, J. editors, “Silo Fundamentals of theory, behaviour and design”, E & FN Spon, pp.118–130. London.
  4. Wójcik, M., Härtl, J., Ooi, J.Y., Rotter, J.M., Ding, S., Enstad, G. 2007. “Experimental Investigation of the Flow Pattern and Wall Pressure Distribution in a Silo with a Double-ConeInsert.” Journal of. Part. Syst. Charact. 24, 2007, pp.296–303.
  5. Härtl, J., Ooi, J.Y., Rotter, J.M., Wojcik, M., Ding, S., Enstad, G.G. 2007. “The influence of a cone-in-cone insert on flow pattern and wall pressure in a full-scale silo”, Journal of chemical engineering research and design 86, 2008, pp. 370–378.
  6. Askifi, F, Hammadeh, H. 2013. “Study the effect of using proposed inserts in silo on flow pattern and wall pressure.” Damascus University, Syria, Vol 29-2, 2013
  7. Härtl, J., 2008. A Study of Granular Solids in Silos with and without an Insert. The University of Edinburgh (PhDThesis).
  8. Wojcik, M., Tejchman, J. 2008. “Application of an Uncoupled ALE-formulation to Confined Granular Flow in Silos.”, The 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG), 1–6 October, 2008, Goa, India.
  9. Wang, Y., Lu, Y., Ooi, J.Y. 2013. “Numerical modelling of dynamic pressure and flow in hopper discharge using the Arbitrary Lagrangian–Eulerian formulation.” Journal of Engineering Structures 56, pp. 1308–1320.
  10. Artoni, R., Santomaso, A., Canu, P. 2009. “Simulation of dense granular flows: Dynamics of wall stress in silos.” Journal of chemical engineering Science 64, 2009, pp 4040–4050.
  11. Artoni, R., Zugliano, A., Primavera, A., Canu, P., Santomaso, A. 2011. “Simulation of dense granular flows: Comparison with experiments.” Journal of Chemical Engineering Science 66, 2011, pp. 548–557.
  12. Silvia Volpato, S., Artoni, R., Santomaso, A. 2013. “Numerical study on the behavior of funnel flow silos with and without inserts through a continuum hydrodynamic approach.” Journal of chemical engineering research and design, 2013.
  13. Rombach, G.A., Neumann, F. “3-D Finite Element Modelling of Granular Flow in Silos”, The 17th ASCE Engineering Mechanics Conference, June 13–16, 2004, University of Delaware, Newark, DE.
  14. ABAQUS version 6.12-1. Dassault Systemes Simulia Corp., USA.
  15. Wojcik, M., Tejchman, J. 2007. “Numerical Simulations of Granular Material Flow In Silos with and without Insert.”, Archives of Civil Engineering. LIII.2.2007, pp. 293–322.
  16. Chen, J.F., Ooi, J.Y., Rotter, J.M., Batikha, M., Zhong, Z., Andreasson, B., Forsmo, S.E., Tano, K., Horrigmoe, G. 2007. “Finite element analysis of solid stresses in a silo with an inner tube”, University of Edinburgh.
  17. Wojcik, M., Tejchman, J., Enstad, G.G. 2012. “Confined granular flow in silos with inserts — Full-scale experiments.”, Journal of Powder Technology 222, 2012, pp. 15–36
  18. Yang, Y., Ooi, J., Rotter, M., Wang, Y. 2011. “Numerical analysis of silo behavior using non-coaxial models.” Journal of chemical engineering Science 66, 2011, pp 1715–1727.
  19. Johanson, J.R., Kleysteuber, K. 1996. “Flow corrective inserts in bin.” Chemical engineerin gprogress 62, 11, pp. 79–83
  20. Tuzun, U., Neddermaan, R,M,. 1983. “Flow of granular materials round obstacles.” Bulk solids handling, 3. pp 503–517.
  21. Karlsson, S., Klisinski, M., Runesson, K., 1998. “Finite element simulations of granular flow in plane silos with complicated geometry.” Powder Technology, 99, pp 29–39.
  22. Wieckowski, Z., 2002. “The dynamic analysis of large strain problems by the material point.” Proc. Of the fifth World Congress Computational Mechanics (WCCM-V), Vienna, Austria.
  23. Rombach G, Eibl J., 1998.” A dynamic finite element model for silo pressure and solids flow. “. In: Brown CJ, Nielsen J, editors. Silos, “fundamentals of theory behaviour and design.” E&FN SPON; pp. 481–94.
  24. Martinez MA, Alfaro I, Doblare M., 2002. “Simulation of axisymmetric discharging in metallic silos: analysis of the induced pressure distribution and comparison with different standards.” Eng Struct 24: pp. 1561–1574.
  25. Vidal P, Guaita M, Ayuga F., 2005. “Analysis of dynamic discharge pressures in cylindrical slender silos with a flat bottom or with a hopper: comparison with Eurocode 1.” Biosyst Eng; 91(3). pp. 335–348.
  26. Hammadeh H, Askifi F., Ubysz A., Maj M., Zeno A., 2019.”Effect of using insert on the flow pressure in cylindrical silo.” Studia Geotechnica et Mechanica; 41 (4), pp.177–183.
  27. Donea J, Huerta A., 2003. “Finite Element Methods for Flow Problems.” John Wiley & Sons Ltd, The Atrium, Southern Gate., England.
  28. Y. Wang, Y. Lu, J.Y. Ooi, 2015. “A numerical study of wall pressure and granular flow in a flat-bottomed silo”, Powder Technol. 282, pp. 43–54
  29. R.J. Goodey, Brown, C.J., Rotter, J.M. 2017. “Rectangular steel silos: Finite element predictions of filling wall pressures”. Engineering Structures, 132, pp. 61–69.
DOI: https://doi.org/10.2478/sgem-2020-0009 | Journal eISSN: 2083-831X | Journal ISSN: 0137-6365
Language: English
Page range: 22 - 33
Submitted on: Jul 18, 2020
Accepted on: Sep 21, 2020
Published on: Oct 28, 2020
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Frzat Askif, Hala Hammadeh, Andrzej Ubysz, Marek Maj, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.