Augustesen, A., Andersen, L., Sørensen, C.S. (2005). Capacity of Piles in Sand. Published in: Department of Civil Engineering, Aalborg University, Denmark, Internal report, ISSN: 1398-6465 R0519.
Augustesen, A., Andersen, L., Sørensen, C.S. (2006). Assessment of Time Functions for Piles Driven in Clay. Published in: Department of Civil Engineering, Aalborg University, Denmark, DCE Technical Memorandum No.1, ISSN: 1901–7278.
Boulon, M., Foray, P. (1986) Physical and numerical simulation of lateral shaft friction of offshore piles in sand. Proceedings of the 3rd International Conference on Numerical Methods in Offshore Piling, Nantes, France, pp. 127–148.
Bhushan, K. (2004). Design and Installation of Large Diameter Pipe Piles for LAXT Wharf. Geotech. Spec. Publ. Pract. Future Trends Deep Found. 125, pp. 370–389.
Bullock, P. J., Schmertmann, J. H., McVay, M. C., Townsend, F. C. (2005). Side shear setup. I: Test Piles Driven in Florida. Geotechnical and Geoenvironmental Engineering, 131(3), pp. 292–300.
Bullock, P. J., Schmertmann, J. H., McVay, M. C., Townsend, F. C. (2005). Side shear setup. II: Test Piles Driven in Florida. Geotechnical and Geoenvironmental Engineering, 131(3), pp. 301–310.
Chow, F.C., Jardine, R.J., Brucy, F., Nauroy, J.F., 1998. Effects of time on capacity of pipe piles in dense marine sand. J. Geotech. Geoenvironmental Eng. 124, 254–264.
Ciavaglia, F., Carey, J., Diambra, A. (2017). Time-dependent uplift capacity of driven piles in low to medium density chalk. Géotechnique Letters, 7(1), pp. 90–96.
Gavin, K., Jardine, R., Karlsrud, K., Lehane, B. (2015). The effects of pile aging on the shaft capacity of offshore piles in sand. Proc. Frontiers in offshore geotechnics III, ISBN 9781138028487 - CAT# K26766
Jardine, R.J., and Standing, J.R. 1999. Pile load testing performed for HSE cyclic loading study at Dunkirk, France. Vol. 1. UK. Health and Safety Executive, London, UK. Offshore Technology Report OTO 2000 007.
Jardine, R.J., Standing, J.R., Chow, F.C., 2006. Some observations of the effects of time on the capacity of piles driven in sand. Géotechnique 56, 227–244.
Karlsrud, K., Haugen, T. (1985). Axial static capacity of steel model piles in overconsolidated clays. Proc., 11th int. conf. on Soil Mechanics and Foundation Engineering, Balkema, Brookfield, Vt, 3, pp. 1401–1406.
Kolk, H., Vergobbi, P., Baaijens, A., 2005. Results from axial load tests on pipe piles in very dense sands: the EURIPIDES JIP, in: Frontiers in Offshore Geotechnics: ISFOG 2005.
Rücker, W., Baessler, M., Cuellar, P., Georgi, S., Richter, T., Kirsch, F., Savidis, S., Tasan, E., 2012. Anwendungsorientiertes Bemessungs- und Überwachungsmodell für Pfahlgründungen von Offshore-Windenergieanlagen unter zyklischer Belastung.
Mitchell, J.K., and Solymar, Z.V. 1984. Time-dependent strength gain in freshly deposited or densified sand. Journal of Geotechnical Engineering, ASCE, 110(11): 1559–1576.
Ng, E.S., Tsang, S.K., and Auld, B.C. 1988. Pile foundation: the behavior of piles in cohesionless soils. Federal Highway Administration, Washington, D.C. Report FHWA-RD-88–081.
Shioi, Y., Yoshida, O., Meta, T., Homma, M., 1992. Estimation of bearing capacity of steel pipe pile by static loading and stresswave theory (Trans-Tokyo Bay Highway). Presented at the Application of stress-wave theory to piles, pp. 325–330.
Skov, R., Denver, H., 1988. Time-dependence of bearing capacity of piles, in: Proc. Third International Conference on the Application of Stress-Wave Theory to Piles. Ottawa. pp. 25–27.
Svinkin, M.R., Skov, R. (2000).Set-up effect of cohesive soils in pile capacity. In:The 6th International Conference on Application of Stress-wave Theory to Piles. Sao Paulo, Brazil, pp.107–111.
Thomann, T.G., and Hryciw, R.D. 1992. Stiffness and strength changes in cohesionless soils due to disturbance. Canadian Geotechnical Journal, <bold>29</bold>(5): 853–861.
White, D.J., Zhao, Y., 2006. A model-scale investigation into “set-up” of displacement piles in sand, in: Proceedings of the Sixth International Conference on Physical Modelling in Geotechnics—6th ICPMG. pp. 889–894.
Reddy, S.C., Stuedlein, A.W. (2014) Reddy and Stuedlein (2014) Time dependant capacity Increase of piles driven in the puget sound lowlands. Geo-congress from soil behavior fundamentals to innovations in Geotechnical Engineering. <a href="https://doi.org/10.1061/9780784413265.037" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1061/9780784413265.037</a>.
Long, J.H., Kerrigan, J.A., Wysockey, M.H. (1999) Measured Time Effects for Axial Capacity of Driven Piling. Transportation Research Record 1663, Paper No. 99–1183, pp. 8–15.
Rimoy, S., Silva, M. Jardine, R., Yang, Z. X., Zhu, B. T., Tsuha C. H. C. (2015) Field and model investigations into the influence of age on axial capacity of displacement piles in silica sands, Géotechnique, Vol. 65, Issue 7, pp. 576–589.
Rimoy, S. P., Jardine, R. J. (2015) Analysis of an extended field test database regarding drivenpile ageing in sands. Geotechnical Engineering for Infrastructure and Development: XVI European Conference on Soil Mechanics and Geotechnical Engineering ISBN: 978-0-7277-6067-8