Have a personal or library account? Click to login
Setup of axial bearing capacity of open ended tubular steel piles driven in sand Cover

Setup of axial bearing capacity of open ended tubular steel piles driven in sand

Open Access
|Mar 2020

References

  1. Augustesen, A., Andersen, L., Sørensen, C.S. (2005). Capacity of Piles in Sand. Published in: Department of Civil Engineering, Aalborg University, Denmark, Internal report, ISSN: 1398-6465 R0519.
  2. Augustesen, A., Andersen, L., Sørensen, C.S. (2006). Assessment of Time Functions for Piles Driven in Clay. Published in: Department of Civil Engineering, Aalborg University, Denmark, DCE Technical Memorandum No.1, ISSN: 1901–7278.
  3. Axelsson, G. (2000). Long-Term Set-Up of Driven Piles in Sand. No. TRITA-AMI PHD 1035 ISSN 1400-1284 ISRNKTH/AMI/PHD--1035--SE).
  4. Boulon, M., Foray, P. (1986) Physical and numerical simulation of lateral shaft friction of offshore piles in sand. Proceedings of the 3rd International Conference on Numerical Methods in Offshore Piling, Nantes, France, pp. 127–148.
  5. Bhushan, K. (2004). Design and Installation of Large Diameter Pipe Piles for LAXT Wharf. Geotech. Spec. Publ. Pract. Future Trends Deep Found. 125, pp. 370–389.
  6. Bowman, E.T., Soga, K., 2005. Mechanisms of setup of displacement piles in sand: laboratory creep tests. Can. Geotech. J. 42, 1391–1407.
  7. Bullock, P. J., Schmertmann, J. H., McVay, M. C., Townsend, F. C. (2005). Side shear setup. I: Test Piles Driven in Florida. Geotechnical and Geoenvironmental Engineering, 131(3), pp. 292–300.
  8. Bullock, P. J., Schmertmann, J. H., McVay, M. C., Townsend, F. C. (2005). Side shear setup. II: Test Piles Driven in Florida. Geotechnical and Geoenvironmental Engineering, 131(3), pp. 301–310.
  9. Chow, F.C., Jardine, R.J., Brucy, F., Nauroy, J.F., 1998. Effects of time on capacity of pipe piles in dense marine sand. J. Geotech. Geoenvironmental Eng. 124, 254–264.
  10. Ciavaglia, F., Carey, J., Diambra, A. (2017). Time-dependent uplift capacity of driven piles in low to medium density chalk. Géotechnique Letters, 7(1), pp. 90–96.
  11. Gavin, K., Jardine, R., Karlsrud, K., Lehane, B. (2015). The effects of pile aging on the shaft capacity of offshore piles in sand. Proc. Frontiers in offshore geotechnics III, ISBN 9781138028487 - CAT# K26766
  12. Jardine, R.J., and Standing, J.R. 1999. Pile load testing performed for HSE cyclic loading study at Dunkirk, France. Vol. 1. UK. Health and Safety Executive, London, UK. Offshore Technology Report OTO 2000 007.
  13. Jardine, R., Chow, F., Overy, R., Standing, J., 2005. ICP design methods for driven piles in sands and clays. Thomas Telford.
  14. Jardine, R.J., Standing, J.R., Chow, F.C., 2006. Some observations of the effects of time on the capacity of piles driven in sand. Géotechnique 56, 227–244.
  15. Jardine, R.J., Zhu, B.T., Foray, P., Yang, Z.X. 2013. Measurement of stresses around closed-ended displacement piles in sand. Géotechnique 63,1, 1–17.
  16. Kirsch, F., von Bargen, M., 2012. Offshore Windpark Nordsee Ost - Sichere Grundung bei Wind und Welle. Presented at the Baugrundtagung Mainz.
  17. Karlsrud, K., Haugen, T. (1985). Axial static capacity of steel model piles in overconsolidated clays. Proc., 11th int. conf. on Soil Mechanics and Foundation Engineering, Balkema, Brookfield, Vt, 3, pp. 1401–1406.
  18. Kolk, H., Vergobbi, P., Baaijens, A., 2005. Results from axial load tests on pipe piles in very dense sands: the EURIPIDES JIP, in: Frontiers in Offshore Geotechnics: ISFOG 2005.
  19. Rücker, W., Baessler, M., Cuellar, P., Georgi, S., Richter, T., Kirsch, F., Savidis, S., Tasan, E., 2012. Anwendungsorientiertes Bemessungs- und Überwachungsmodell für Pfahlgründungen von Offshore-Windenergieanlagen unter zyklischer Belastung.
  20. Lehane, B.M., Jardine, R.J., Bond, A.J., Frank, R. (1993). Mechanisms of shaft friction in sand from instrumented pile tests. Journal of Geotechnical Engineering 119 (1), 19–35.
  21. Mitchell, J. K. (1986). Practical problems from surprising soil behavior. <em>J. Geotech. Engrg.,</em> ASCE, 112(3), 259–289.
  22. Mitchell, J.K., and Solymar, Z.V. 1984. Time-dependent strength gain in freshly deposited or densified sand. Journal of Geotechnical Engineering, ASCE, 110(11): 1559–1576.
  23. Schmertmann, J.H., 1991. The mechanical aging of soils. ASCE J. Geotech. Eng. 117 (9), 1288–1330.
  24. Ng, E.S., Tsang, S.K., and Auld, B.C. 1988. Pile foundation: the behavior of piles in cohesionless soils. Federal Highway Administration, Washington, D.C. Report FHWA-RD-88–081.
  25. Ng, N., Berner, P., and Covil, C. 1998. The ageing effects of sands. Ground Engineering, 10(Suppl.): 21.
  26. Shioi, Y., Yoshida, O., Meta, T., Homma, M., 1992. Estimation of bearing capacity of steel pipe pile by static loading and stresswave theory (Trans-Tokyo Bay Highway). Presented at the Application of stress-wave theory to piles, pp. 325–330.
  27. Skov, R., Denver, H., 1988. Time-dependence of bearing capacity of piles, in: Proc. Third International Conference on the Application of Stress-Wave Theory to Piles. Ottawa. pp. 25–27.
  28. Svinkin, M.R., Skov, R. (2000).Set-up effect of cohesive soils in pile capacity. In:The 6th International Conference on Application of Stress-wave Theory to Piles. Sao Paulo, Brazil, pp.107–111.
  29. Thomann, T.G., and Hryciw, R.D. 1992. Stiffness and strength changes in cohesionless soils due to disturbance. Canadian Geotechnical Journal, <bold>29</bold>(5): 853–861.
  30. White, D.J., Zhao, Y., 2006. A model-scale investigation into “set-up” of displacement piles in sand, in: Proceedings of the Sixth International Conference on Physical Modelling in Geotechnics—6th ICPMG. pp. 889–894.
  31. York, D.L., Brusey, W.., Clemente, F.M., Law, S.K., 1994. Setup and relaxation in glacial sand. J. Geotech. Eng. 120, 1498–1513.
  32. Reddy, S.C., Stuedlein, A.W. (2014) Reddy and Stuedlein (2014) Time dependant capacity Increase of piles driven in the puget sound lowlands. Geo-congress from soil behavior fundamentals to innovations in Geotechnical Engineering. <a href="https://doi.org/10.1061/9780784413265.037" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1061/9780784413265.037</a>.
  33. Long, J.H., Kerrigan, J.A., Wysockey, M.H. (1999) Measured Time Effects for Axial Capacity of Driven Piling. Transportation Research Record 1663, Paper No. 99–1183, pp. 8–15.
  34. Rimoy, S., Silva, M. Jardine, R., Yang, Z. X., Zhu, B. T., Tsuha C. H. C. (2015) Field and model investigations into the influence of age on axial capacity of displacement piles in silica sands, Géotechnique, Vol. 65, Issue 7, pp. 576–589.
  35. Rimoy, S. P., Jardine, R. J. (2015) Analysis of an extended field test database regarding drivenpile ageing in sands. Geotechnical Engineering for Infrastructure and Development: XVI European Conference on Soil Mechanics and Geotechnical Engineering ISBN: 978-0-7277-6067-8
DOI: https://doi.org/10.2478/sgem-2019-0032 | Journal eISSN: 2083-831X | Journal ISSN: 0137-6365
Language: English
Page range: 74 - 82
Submitted on: Apr 24, 2019
Accepted on: Sep 18, 2019
Published on: Mar 19, 2020
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2020 Marx Ferdinand Ahlinhan, Edmond Codjo Adjovi, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.