Have a personal or library account? Click to login
Modeling of Fracture Propagation in Concrete Structures Using a Constitutive Relation with Embedded Discontinuity Cover

Modeling of Fracture Propagation in Concrete Structures Using a Constitutive Relation with Embedded Discontinuity

Open Access
|Feb 2015

References

  1. [1] PIETRUSZCZAK S., MROZ Z., Finite Element Analysis of Deformation of Strain-Softening Materials, Int. J. Numer Meth. Engng., 1981, Vol. 17, 327-334.10.1002/nme.1620170303
  2. [2] PIETRUSZCZAK S., On Homogeneous and Localized Deformation in Water-Infiltrated Soils, International Journal of Damage Mechanics, 1999, Vol. 8, 233-253.10.1177/105678959900800302
  3. [3] NGO D., SCORDELIS A.C., Finite Element Analysis of Reinforced Concrete Beams, ACI Journal Proceedings, 1967, Vol. 64, 152-163.10.14359/7551
  4. [4] NILSON A.H., Nonlinear Analysis of Reinforced Concrete by the Finite Element Method, ACI Journal Proceedings, 1968, Vol. 65, 757-66.10.14359/7510
  5. [5] SAOUMA V.E., INGRAFFEA A.R., GERGELY P., WHITE R.N., Interactive Finite Element Analysis of Reinforced Concrete: A Fracture Mechanics Approach, 1981.
  6. [6] SHEPHARD M.S., YEHIA N., BURD G.S., WEIDNER T.J., Automatic Crack Propagation Tracking, Computers & Structures, 1985, Vol. 20, No. 1, 211-223.10.1016/0045-7949(85)90070-7
  7. [7] NAYAK G.C., ZIENKIEWICZ O.C., Elasto-Plastic Stress Analysis: A Generalization for Various Constitutive Relations Including Strain Softening, Int. J. Numer Meth. Engng., 1972, Vol. 5, 113-135.10.1002/nme.1620050111
  8. [8] BAzANT Z.P., CEDOLIN L., Blunt Crack Band Propagation in Finite Element Analysis, Journal of the Engineering Mechanics, 1979, Vol. 105, No. 2, 297-315.10.1061/JMCEA3.0002467
  9. [9] BELYTSHKO T., FISH J., ENGELMANN B.E., A finite element with embedded localization zones, Computer Methods in Applied Mechanics and Engineering, 1988, Vol. 70, 59-89.10.1016/0045-7825(88)90180-6
  10. [10] BELYTSHKO T., LU Y.Y., GU L., Element-free Galerkin methods, Int. J. Numer Meth. Engng., 1994, Vol. 37, 229-256.10.1002/nme.1620370205
  11. [11] LIU W.K., JUN S., ZHANG Y.F., Reproducing kernel particle methods, Int. J. Numer Meth. Fluids, 1995, Vol. 20, 1081-1106.10.1002/fld.1650200824
  12. [12] MELENK J.M., BABUŠKA I., The Partition of Unity Finite Element Method: Basic Theory and Applications, Computer Methods in Applied Mechanics and Engineering, 1996, Vol. 139, 289-314.10.1016/S0045-7825(96)01087-0
  13. [13] BELYTSCHKO T., BLACK T., Elastic Crack Growth in Finite Elements with Minimal Remeshing, Int. J. Numer Meth. Engng., 1999, Vol. 45, 601-620.10.1002/(SICI)1097-0207(19990620)45:5<;601::AID-NME598>3.0.CO;2-S
  14. [14] MOĚS N., DOLBOW J., BELYTSCHKO T., A Finite Element Method for Crack Growth Without Remeshing, Int. J. Numer Meth. Engng., 1999, Vol. 46, 131-150.10.1002/(SICI)1097-0207(19990910)46:1<;131::AID-NME726>3.0.CO;2-J
  15. [15] STOLARSKA M., CHOPP D.L., MOĚS N., BELYTSCHKO T., Modelling Crack Growth by Level Sets in the Extended Finite Element Method, Int. J. Numer Meth. Engng., 2001, Vol. 51, 943-960.10.1002/nme.201
  16. [16] BELYTSCHKO T., CHEN H., XU J., ZI G., ĚDynamic Crack Propagation Based on Loss of Hyperbolicity and a New Discontinuous Enrichment, Int. J. Numer Meth. Engng., 2003, Vol. 58, 1873-1905.10.1002/nme.941
  17. [17] RĔTHORĔ J., DE BORST R., ABELLAN M.-A., A Two-Scale Approach for Fluid Flow in Fractured Porous Media, Int. J. Numer Meth. Engng., 2006, Vol. 71, 780-800.10.1002/nme.1962
  18. [18] KHOEI A.R., HAGHIGHAT E., Extended Finite Element Modeling of Deformable Porous Media with Arbitrary Interfaces, Applied Mathematical Modelling, 2011, Vol. 35, No. 11, 5426-5441.10.1016/j.apm.2011.04.037
  19. [19] AREIAS P.M.A., BELYTSCHKO T., Two-Scale Method for Shear Bands: Thermal Effects and Variable Bandwidth, Int. J. Numer Meth. Engng., 2007, Vol. 72, 658-696.10.1002/nme.2028
  20. [20] GÁLVEZ J.C., ELICES M., GUINEA G.V., PLANAS J., Mixed Mode Fracture of Concrete Under Proportional and Nonproportional Loading, Int. J. Fract., 1998, Vol. 94, 267- 284.10.1023/A:1007578814070
  21. [21] WELLS G.N., SLUYS L.J., A New Method for Modelling Cohesive Cracks Using Finite Elements, Int. J. Numer. Meth. Engng., 2001, Vol. 50, 2667-2682.10.1002/nme.143
DOI: https://doi.org/10.2478/sgem-2014-0033 | Journal eISSN: 2083-831X | Journal ISSN: 0137-6365
Language: English
Page range: 27 - 33
Published on: Feb 28, 2015
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Stanisław Pietruszczak, Ehsan Haghighat, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.