Have a personal or library account? Click to login
Technical Notoe: Prediction of Static Liquefaction by Nor Sand Constitutive Model Cover

Technical Notoe: Prediction of Static Liquefaction by Nor Sand Constitutive Model

Open Access
|Feb 2015

References

  1. [1] ALARCON-GUZMAN A., LEONARDS G., CHAMEAU J.L., Undrained monotonic and cyclic strength of sands, ASCE J. Geotech. Engng, 1988, 114, 10, 1089-1109.10.1061/(ASCE)0733-9410(1988)114:10(1089)
  2. [2] BEEN K., JEFFERIES M.G., HACHEY J., The critical states of sands, Geotechnique, 1991, 41, 3, 365-381.10.1680/geot.1991.41.3.365
  3. [3] BOUKPETI N., MRÓZ Z., DRESCHER A., A model for static liquefaction in triaxial compression and extension, Can. Geotech. J., 2002, 39, 1243-1253.10.1139/t02-066
  4. [4] CASAGRANDE A., Characteristics of cohesionless soils affecting the stability of earth fills, Journal of Boston Society of Civil Engineers, 1936, 23, 257-276.
  5. [5] CASAGRANDE A., Liquefaction and cyclic deformation of sands, a critical review, Proc. 5th Pan-American Conf. on Soil Mech. and Found. Engng, Buenos Aires, 1975, 5, 79-133.
  6. [6] CASTRO G., Liquefaction and cyclic mobility of saturated sands, J. Geotech. Engng Div., ASCE, 1975, 101, 6, 551-569.10.1061/AJGEB6.0000173
  7. [7] CASTRO G., POULOS S.J., Factors affecting liquefaction and cyclic mobility. J. Geotech. Engng Div. ASCE, 1977, 103, 501-516.10.1061/AJGEB6.0000433
  8. [8] DARVE F., Incrementally non-linear constitutive relationships, in Darve F. (ed.), Geomaterials Constitutive Equations and Modelling, Elsevier Applied Science, London 1990, 213-238.10.1201/9781482296532
  9. [9] DARVE F., LABANIEH S., Incremental constitutive law for sands and clays: simulation of monotonic and cyclic tests, Int. J. Numer. Anal. Meth. Geomech., 1982, 6, 243-275.10.1002/nag.1610060209
  10. [10] DRUCKER D.C., GIBSON R.E., HENKEL D.J., Soil mechanics and work hardening theories of plasticity, Trans. ASCE, 1957, 122, 338-346.10.1061/TACEAT.0007430
  11. [11] DE GROOT M.B., BOLTON M.D., FORAY P., MEIJERS P., PALMER A.C., SANDVEN R., SAWICKI A., TEH T.C., Physics of Liquefaction Phenomena around Marine Structures, Journal of Waterway, Port, Coastal, and Ocean Engineering, 2006, Vol. 132, No. 4, July 1, 227-243.10.1061/(ASCE)0733-950X(2006)132:4(227)
  12. [12] ISHIHARA K., TATSUOKA F., YASUDA V., Undrained deformation and liquefaction of sand under cyclic stresses, Soils and Foundations, 1975, 15, 29-44.10.3208/sandf1972.15.29
  13. [13] ISHIHARA K., Liquefaction and flow failure during earthquakes, Geotechnique, 1993, 43, No. 3, 351-415.10.1680/geot.1993.43.3.351
  14. [14] JEFFERIES M.G., Nor-Sand: a simple critical state model for sand, Geotechnique, 1993, 43, No 1, 91-103.10.1680/geot.1993.43.1.91
  15. [15] JEFFERIES M.G., BEEN K., Soil Liquefaction. A critical state approach, Taylor & Francis, London and New York 2006.10.4324/9780203301968
  16. [16] KOLYMBAS D., An outline of hypoplasticity, Archive of Applied Mechanics, 1991, 61, 143-151.10.1007/BF00788048
  17. [17] LADE P.V., Elasto-plastic stress-strain theory for cohesionless soil with curved yield surfaces, Int. J. Solids and Structures, 1977, 13, 1019-1035.10.1016/0020-7683(77)90073-7
  18. [18] LI X.S., DAFALIAS Y.F., WANG Z.-L., State dependent dilatancy in critical state constitutive modelling of sand, Canadian Geotechnical Journal, 1999, 36, 599-611.10.1139/t99-029
  19. [19] MARCUSON W.F. III., Definition of terms related to liquefaction, J. Geotech. Eng. Div., Am. Soc. Civ. Eng., 1978, 104(9), 1197-1200.10.1061/AJGEB6.0000688
  20. [20] NOVA R., WOOD D.M., A constitutive model for sand in triaxial compression, Int. J. Num. Anal. Meth. Geomech., 1979, 3, 255-278.10.1002/nag.1610030305
  21. [21] PASTOR M., ZIENKIEWICZ O.C., CHAN A.H.C., Generalized plasticity and the modelling of soil behaviour, Int. J. Num. Anal. Meth. Geomech., 1990, 14, 151-190.10.1002/nag.1610140302
  22. [22] PASTOR M., ZIENKIEWICZ O.C., LEUNG K.H., A simple model for transient soil loading in earthquake analysis. II: Nonassociative model for sands, Int. J. Numer. Anal. Methods in Geomech., 1985, 9, 477-498.10.1002/nag.1610090506
  23. [23] POULOS S.J., The steady state of deformation, J. Geotech. Eng. Div., ASCE, 1981, 107, 5, 553-562.10.1061/AJGEB6.0001129
  24. [24] ROSCOE K., SCHOFIELD A.N., WROTH C.P., On the yielding of soils, Geotechnique, 1958, 8, 1, 22-53.10.1680/geot.1958.8.1.22
  25. [25] SAWICKI A., ŚWIDZIŇSKI W., Modelling the pre-failure instabilities of sand, Computers and Geotechnics, 2010, 37, 781-788.10.1016/j.compgeo.2010.06.004
  26. [26] SLADEN J.A., D'HOLLANDER R.D., KRAHN J., The liquefaction of sands, a collapse surface approach, Can. Geotech. J., 1985, 22, 4, 564-578.10.1139/t85-076
  27. [27] ŚWIDZIŇSKI W., Compaction and liquefaction mechanisms of non-cohesive soils, in Polish, Wydawnictwo IBW PAN, Gdansk 2006.
  28. [28] VAID Y.P., CHUNG E.K.F., KUERBIS R.H., Stress path and steady state, Canadian Geotech. J., 1990, Vol. 27, 1-7.10.1139/t90-001
  29. [29] VERDUGO R., ISHIHARA K., The steady state of sandy soils, Soils and Foundations, 1996, Vol. 36, No. 2, 81-91.10.3208/sandf.36.2_81
  30. [30] WU W., NIEMUNIS A., Failure criterion, flow rule and dissipation function derived from hypoplasticity, Mech. Cohesive- Frictional Mater., 1996, 1, 145-163.10.1002/(SICI)1099-1484(199604)1:2<;145::AID-CFM8>3.0.CO;2-9
  31. [31] YAMAMURO J.A., LADE P.V., Static liquefaction of very loose sands, Can. Geotech. J., 1997, 34(6), 905-917.10.1139/t97-057
  32. [32] YAMAMURO J.A., LADE P.V., Steady State Concepts and Static Liquefaction of Silty Sands, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1998, 124(9), 868-877.10.1061/(ASCE)1090-0241(1998)124:9(868)
  33. [33] YAMAMURO J.A., LADE P.V., Experiments and modelling of silty sands susceptible to static liquefaction, Mechanics of Cohesive-Frictional Materials, Wiley, 1999, Vol. 4, No. 6, 545-564.10.1002/(SICI)1099-1484(199911)4:6<;545::AID-CFM73>3.0.CO;2-O
  34. [34] YOUD T.L., IDRISS I., ANDRUS R., ARANGO I., CASTRO G., CHRISTIAN J., DOBRY R., FINN W., HARDER L. JR., HYNES M., ISHIHARA K., KOESTER J., LIAO S., MARCUSON W., III, MARTIN G., MITCHELL J., MORIWAKI Y., POWER M., ROBERTSON P., SEED R., STOKOE K. II, Liquefaction resistance of soils: Summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of Soils, J. Geotech. Geoenviron. Eng., 2001, 127 (10), 817-833.10.1061/(ASCE)1090-0241(2001)127:10(817)
  35. [35] ZIENKIEWICZ O.C., MRÓZ Z., Generalized plasticity formulation and application to geomechanics, In: Mechanics of Engineering Materials, Eds C.S. Desai, R.H. Gallaher, John Wiley and Sons, 1985.
  36. [36] ZIENKIEWICZ O.C., LEUNG K.H., PASTOR M., A simple model for transient soil loading in earthquake analysis. I: Basic model and its application, Int. J. Numer. Anal. Methods in Geomech., 1985, 9, 953-976.10.1002/nag.1610090505
DOI: https://doi.org/10.2478/sgem-2014-0029 | Journal eISSN: 2083-831X | Journal ISSN: 0137-6365
Language: English
Page range: 75 - 83
Published on: Feb 28, 2015
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Krzysztof Sternik, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.