Have a personal or library account? Click to login
Effect of Variation of Temperature Field on the Process of Thermal Consolidation of Tailings Pond “Zelazny Most” Cover

Effect of Variation of Temperature Field on the Process of Thermal Consolidation of Tailings Pond “Zelazny Most”

Open Access
|Feb 2015

References

  1. [1] BARTLEWSKA M., STRZELECKI T., Equations of Biots consolidation with Kelvin-Voight rheological frame, Studia Geotechnica et Mechanica, Vol. XXXI, 2009, No. 2, 3–15.
  2. [2] BARTLEWSKA–URBAN M., STRZELECKI T., Thermal consolidation of porous medium with a rheological Kelvin–Voigt skeleton, Studia Geotechnica et Mechanica, 2012, 34, 3, 17–35.10.2478/sgm031202
  3. [3] BIOT M.A., General theory of three–dimensional consolidation, J. Appl. Phys., 1941, 12, 155.10.1063/1.1712886
  4. [4] BIOT M.A., General Solutions of the Equations of Elasticity and Consolidation of a Porous Material, J. Appl. Mech., 1956, 23.10.1115/1.4011213
  5. [5] DERSKI W., Some Contributions to the Theory of Flow of Fluids through porous Deformable Media, Acta Mechanica, 1967, IV/1.10.1007/BF01291084
  6. [6] BENSOUSSAN A., LIONS J.L., PAPANICOLAU G., Asymptotic analysis for periodic structures, North Holland Publishing Company, Amsterdam 1978.
  7. [7] AURIAULT J.L., Dynamic behaviour of porous media, Transport Processes in Porous Media, Kluver Academic Publishers, 1991, 471–519.10.1007/978-94-011-3628-0_9
  8. [8] AURIAULT J.L., SANCHEZ PALENCIA E., Etude de comportement macroscopique d'un milieu poreuxsature deformable, Journal de Mecanique, 1977, 16 (4), 575–603.
  9. [9] KRÖNER E., Effective elastic moduli of periodic and random media: a unification, Mechanics Research Communication, 1980, 7 (5), 323–327.10.1016/0093-6413(80)90072-5
  10. [10] RUBINSTEIN J., TORQUATO S., Flow in random porous media: mathematical formulation, variational principles and rigorous bounds, J. Fluid Mech., 1989, 206, 25–46.10.1017/S0022112089002211
  11. [11] AURIAULT J.L., STRZELECKI T., BAUER J. HE S., Porous deformable media by a very compressible fluid, Eur. J. Mech. a. Solid, 1990, 9, 4, 373–392.
  12. [12] BARTLEWSKA–URBAN M., STRZELECKI T., One–dimensional consolidation of the porous medium with the rheological Kelvin–Voigt skeleton, Studia Geotechnica et Mechanica, 2008, 30, 1/2, 115–122.
  13. [13] COUSSY O., Mechanics and physics of porous solids, John Wiley & Sons, 2011.10.1002/9780470710388
  14. [14] KOWALSKI S.J., MUSIELAK G., RYBICKI A., Drying Processes in Context of the Theory of Fluid Saturated Porous Materials, J. Theoretical and Applied Mechanics, 1998, 36, 3.
  15. [15] STRZELECKI T., KOSTECKI S., ZAK S., Modelowanie przeplywów przez ośrodki porowate, Dolnoślśkie Wydawnictwo Edukacyjne, Wroclaw 2008.
  16. [16] CUDNY M., BINDER K. Kryteria wytrzymalości gruntu na ścinanie w zagadnieniach geotechniki (On shear strength criteria for soils in geotechnics), Inśynieria Morska i Geotechnika, 2005, 6, 456–465 (PDF).
  17. [17] NIEMUNIS A., Über die Anwendung der Kontinuumstheorie auf bodenmechanische Probleme, Eine Vorlesung für Grundbau- und Tunnelbauvertiefer, Uniwersytet w Bochum, on line: www.gub.ruhr-uni-bochum.de/mitarbeiter/andrzej_niemunis.htm, 2003.
  18. [18] BARTLEWSKA M., The doctoral dissertation on the theme: Określenie parametrów efektywnych modeli reologicznych gruntów spoistych, Politechnika Wroclawska, Faculty of Geoengineering, Mining and Geology, Wroclaw 2009.
DOI: https://doi.org/10.2478/sgem-2014-0021 | Journal eISSN: 2083-831X | Journal ISSN: 0137-6365
Language: English
Page range: 57 - 65
Published on: Feb 28, 2015
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Monika Bartlewska-Urban, Tomasz Strzelecki, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.