Have a personal or library account? Click to login
A Nanoscale Simulation Study of Elastic Properties of Gaspeite Cover

A Nanoscale Simulation Study of Elastic Properties of Gaspeite

Open Access
|Feb 2015

References

  1. [1] ARAUJO R.M., ERNESTO M., GIROLDO V., Computer simulation of static defects generated by the metals substitutional CaCO3, thesis, Department of Physics at the Federal University of Sergipe, Brasil, 2004.
  2. [2] ARCHER T.D., BIRSE S.E.A., DOVE M.T. et al., An interatomic potential model for carbonates allowing for polarization effects, Phys. Chem. Minerals, 2003, 30, 416–424.10.1007/s00269-002-0269-z
  3. [3] AUSTEN K.F., WRIGHT K., SLATER B., GALE J.D., The interaction of dolomite surfaces with metal impurities: A Computer Simulation Study, Phys. Chem. Chem. Phys., 2005, 7, 4150–4156.10.1039/b510454h16474881
  4. [4] BENAZZOUZ B.-K., Etude théorique des propriétés structurales et mécaniques de la roche rhodochrosite, 31ème Rencontres Universitaires de Génie Civil, Cachan, 2013.
  5. [5] BORN M., HUANG K., Dynamical theory of crystal lattices, Oxford University Press, Oxford, 1954.
  6. [6] CATLOW C.R.A., MACKRODT W.C., Computer Simulation of Solids, 320, p. Berlin, Springer-Verlag, 1982.10.1007/BFb0017927
  7. [7] CATTI M., PAVESE A., PRICE G.D., Thermodynamic properties of CaCO3 calcite and aragonite: a quasi-harmonic calculation, Phys. Chem. Miner., 1993, 19, 472–479.10.1007/BF00203187
  8. [8] CYGAN R.T., WRIGHT K., FISLER D.K., GALE J.D., SLATER B., Atomistic models of carbonate minerals: bulk and surface structures, defects, and diffusion, Molecular Simulation, 2002, Vol. 28 (6–7), 475–495.10.1080/08927020290030099
  9. [9] DICK B.G., OVERHAUSER A.W., Theory of the dielectric constants of alkalihalide crystals, Physical Review, 1958, 112, 90–103.10.1103/PhysRev.112.90
  10. [10] DOVE M.T., WINKLER B., LESLIE M., HARRIS M.J., SALJE E.K.H., A new interatomic potential model for calcite: applications to lattice dynamics studies, phase transition, and isotopic fractionation, Am. Mineral., 1992, 77, 244–250.
  11. [11] FISLER D.K., GALE J.D., CYGAN R.T. et al., A shell model for the simulation of rhombohedral carbonate minerals and their point defects, Am. Mineral., 2000, 85, 217–224.10.2138/am-2000-0121
  12. [12] GALE J.D., Empirical potential derivation for ionic materials, Phil. Mag. B, 1996, 73, 3.10.1080/13642819608239107
  13. [13] GALE J.D., GULP: A computer program for the symmetryadapted simulation of solids, J. Chem. Soc. Faraday Trans., 1997, 93, 629–637.10.1039/a606455h
  14. [14] GALE J.D., ROHL A.L., The general utility lattice program (gulp), Molecular Simulation, 2003, Vol. 29 (5), 291–341.10.1080/0892702031000104887
  15. [15] JACKSON R.A., PRICE G.D., A transferable interatomic potential for calcium carbonate, Molecular Simulation, 1992, 9, 75–177.10.1080/08927029208050610
  16. [16] JACKSON R.A., MEENAN P.A., PRICE G.D. et al., Deriving empirical potentials for molecular ionic materials, Mineral. Mag., 1995, 59, 617–622.10.1180/minmag.1995.059.397.05
  17. [17] LEEUW N.H., PARKER S.C., Modeling absorption and segregation of magnesium and cadmium ions to calcite surfaces: Introducing MgCO3 and CdCO3 potential models, Journal of Chemical Physics, 2000, Vol. 112, No. 9.10.1063/1.480979
  18. [18] NYE J.F., Physical properties of crystals, Oxford University Press, 1985.
  19. [19] PARKER S.C., TITILOYE J.O., WATSON G.W., Phil. Trans. R Soc. London, Ser. A Phys. Sci. Eng. 1993, 344, 37.
  20. [20] PAVESE A., CATTI M., PRICE G.D. et al., Interatomic potentials for CaCO3 polymorphs (calcite and aragonite), fitted to elastic and vibrational data, Phys. Chem. Minerals, 1992, 19, 80–87.10.1007/BF00198605
  21. [21] PAVESE A., CATTI M., PARKER S.C., WALL A., Modelling of the thermal dependence of structural and elastic properties of calcite, CaCO3, Phys. Chem. Minerals, 1996, 23, 89–93.10.1007/BF00202303
  22. [22] PERTLIK., Structures of hydrothermally synthesized cobalt (II) carbonate and nickel(II) carbonate, Acta Cryst., 1986, C42, 4–5.10.1107/S0108270186097524
  23. [23] ROHL A.L, WRIGHT K., GALE J.D., Evidence from surface phonons for the (2 ˟ 1) reconstruction of the (10–14) surface of calcite from computer simulation, American Mineralogist, 2003, Vol. 88, 921–925.10.2138/am-2003-5-622
  24. [24] SEKKAL W., TALEB N., ZAOUI A., SHAHROUR I., A lattice dynamical study of the aragonite and post-aragonite phases of calcium carbonate rock, American Mineralogist, 2008, Vol. 93, 1608–1612.10.2138/am.2008.2820
  25. [25] VINOGRAD V.L, WINKLER B., PUTNIS A., GALE J.D., SLUITER M.H.F., Static lattice energy calculations of mixing and ordering enthalpy in binary carbonate solid solutions, Chemical Geology, 2006, 225, 304–313.10.1016/j.chemgeo.2005.08.023
  26. [26] WANG Q., GRAU-CRESPO R., DE LEEUW N.H., Mixing Thermodynamics of the Calcite-Structured (Mn, Ca)CO3 Solid Solution: A Computer Simulation Study, J. Phys. Chem. B, 2011, 115, 3854–13861.10.1021/jp200378q22011346
  27. [27] ZAOUI A., SHAHROUR I., Molecular dynamics study of highpressure polymorphs of BaCO3, Philosophical Magazine Letters, 2010, Vol. 90, No. 9, 689–697. [28]ZHANG J., REEDER R.J., Comparative compressibilities of calcite-structure carbonates: Deviations from empirical relations, American Mineralogist, 1999, 84, 861–870.10.2138/am-1999-5-620
  28. [28] ZHANG J., REEDER R.J., Comparative compressibilities of calcite-structure carbonates: Deviations from empirical relations, American Mineralogist, 1999, 84, 861–870.10.2138/am-1999-5-620
DOI: https://doi.org/10.2478/sgem-2014-0015 | Journal eISSN: 2083-831X | Journal ISSN: 0137-6365
Language: English
Page range: 9 - 16
Published on: Feb 28, 2015
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Brahim-Khalil Benazzouz, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.