Have a personal or library account? Click to login
First evidence for bidirectional gene flow between the co-occurring red oak species Quercus imbricaria Michx. and Quercus coccinea Münchh. Cover

First evidence for bidirectional gene flow between the co-occurring red oak species Quercus imbricaria Michx. and Quercus coccinea Münchh.

Open Access
|Sep 2025

References

  1. Aldrich PR, Michler CH, Sun WL, Romero-Severson J (2002) Microsatellite markers for northern red oak (Fagaceae : Quercus rubra). Molecular Ecology Notes 2(4): 472-474. https://doi.org/10.1046/j.1471-8278.2002.00282.x
  2. Arnold ML (2004) Transfer and origin of adaptations through natural hybridization: Were Anderson and Stebbins right? Plant Cell 16(3): 562-570. https://doi.org/10.1105/tpc.160370
  3. Arnold ML. (2016). Divergence with genetic exchange. Oxford University Press.
  4. Brauer CJ, Sandoval-Castillo J, Gates K, Hammer MP, Unmack PJ, Bernatchez L, Beheregaray LB (2023) Natural hybridization reduces vulnerability to climate change. Nature Climate Change 13(3): 282-289. https://doi.org/10.1038/s41558-022-01585-1
  5. Brandenburg DM (submitted). Discovery and recognition of a novel oak hybrid from Southern Ohio, U.S.A.
  6. Burger K, Gailing O (2022) Genetic variability of indigenous (Quercus robur L.) and late flushing oak (Quercus robur L. subsp. slavonica (Gáyer) Mátyás) in adult stands compared with their natural regeneration. European Journal of Forest Research 141: 1073-1088. https://doi.org/10.1007/s10342-022-01491-3
  7. Cannon CH, Petit RJ (2020) The oak syngameon: more than the sum of its parts. New Phytologist 226(4): 978-983. https://doi.org/10.1111/nph.16091
  8. Chan WY, Hoffmann AA, van Oppen MJH (2019) Hybridization as a conservation management tool. Conservation Letters 12(5): e12652. https://doi.org/https://doi.org/10.1111/conl.12652
  9. Curtu AL, Gailing O, Finkeldey R (2007) Evidence for hybridization and introgression within a species-rich oak (Quercus spp.) community. BMC Evolutionary Biology 7: 218. https://doi.org/https://doi.org/10.1186/1471-2148-7-218
  10. Curtu AL, Gailing O, Finkeldey R (2009) Patterns of contemporary hybridization inferred from paternity analysis in a four-oak-species forest. BMC Evolutionary Biology 9: 284. https://doi.org/10.1186/1471-2148-9-284
  11. Denk T, Grimm GW, Manos PS, Deng M, Hipp AL (2017) An Updated Infrageneric Classification of the Oaks: Review of Previous Taxonomic Schemes and Synthesis of Evolutionary Patterns. In Oaks Physiological Ecology. Exploring the Functional Diversity of Genus Quercus L. Tree Physiology; Gil-Pelegrin E, Peguero-Pina J, Sancho-Knapik D, Eds., Springer: Cham, Switzerland, 2017; Volume 7, pp. 13-38. https://doi.org/10.1007/978-3-319-69099-5_2
  12. Durand J, Bodénès C, Chancerel E, Frigero J-M, Vendramin GG, Sebastiani F, Buonamici A, Gailing O, Koelewijn H-P, Villani F, Mattioni C, Cherubini M, Goicoechea PG, Herran A, Ikaran Z, Cabane C, Ueno S, de Daruvar A, Kremer A, Plomion C (2010) A fast and cost-effective approach to develop and map EST-SSR markers: oak as a case study. BMC Genomics 11: 570. https://doi.org/https://doi.org/10.1186/1471-2164-11-570
  13. Fady B, Aravanopoulos FA, Alizoti P, Mátyás C, von Wühlisch G, Westergren M, Belletti P, Cvjetkovic B, Ducci F, Huber G, Kelleher CT, Khaldi A, Kharrat MBD, Kraigher H, Kramer K, Mühlethaler U, Peric S, Perry A, Rousi M, Sbay H, Stojnic S, Tijardovic M, Tsvetkov I, Varela MC, Vendramin GG, Zlatanov T (2016) Evolution-based approach needed for the conservation and silvi-culture of peripheral forest tree populations. Forest Ecology and Management 375:66-75 https://doi.org/10.1016/j.foreco.2016.05.015
  14. Gailing O, Curtu AL (2014) Interspecific gene flow and maintenance of species integrity in oaks. Annals of Forest Research 57: 5-18. https://doi.org/10.15287/afr.2014.171
  15. Gailing O, Lind J, Lilleskov EA (2012) Leaf morphological and genetic differentiation between Quercus rubra L. and Q. elliposidalis E. J. Hill populations in contrasting environments. Plant Systematics and Evolution 298: 1533-1545. https://doi.org/10.1007/s00606-012-0656-y
  16. Gailing O, Zhang R (2018) Experimental evidence for selection against hybrids between two interfertile red oak species. Silvae Genetica 67(1): 106-110. https://doi.org/https://doi.org/10.2478/sg-2018-0015
  17. Hipp AL, Manos PS, Hahn M, Avishai M, Bodénès C, Cavender-Bares J, Crowl A, Deng M, Denk T, Fitz-Gibbon S, Gailing O, González-Elizondo MS, González-Rodríguez A, Grimm GW, Jiang X-L, Kremer A, Lesur I, McVay JD, Plomion C, Rodríguez-Correa H, Schulze E-D, Simeone MC, Sork VL, Valencia-Avalos S (2020) Genomic landscape of the global oak phylogeny. New Phytologist 206: 1198-1212. https://doi.org/10.1101/587253
  18. Hipp AL, Weber JA (2008) Taxonomy of Hill’s oak (Quercus ellipsoidalis: Fagaceae): Evidence from AFLP data [Article]. Systematic Botany 33(1): 148-158. https://doi.org/DOI10.1600/036364408783887320
  19. Jensen RJ (1997). Quercus Linnaeus sect. Lobatae Loudon. Pp. 447-468 in Flora of North America, Volume 3: Magnoliophyta, Magnoliidae and Hamamelidae, Flora of North America Editorial Committee, editors. Oxford University Press, New York, N. Y.
  20. Jensen J, Larsen A, Nielsen LR, Cottrell J (2009) Hybridization between Quercus robur and Q. petraea in a mixed oak stand in Denmark. Annals of Forest Science 66(7): 706. https://doi.org/10.1051/forest/2009058
  21. Khodwekar S, Gailing O (2017) Evidence for environment-dependent introgression of adaptive genes between two red oak species with different drought adaptations. American Journal of Botany 104(7): 1088-1098. https://doi.org/10.3732/ajb.1700060
  22. Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I (2015) Clump-ak: a program for identifying clustering modes and packaging population structure inferences across K. Molecular Ecology Resources 15(5): 1179-1191. https://doi.org/https://doi.org/10.1111/1755-0998.12387
  23. Lazic D, Hipp AL, Carlson JE, Gailing O (2021) Use of genomic resources to assess adaptive divergence and introgression in oaks. Forests 12(6): 690. https://doi.org/10.3390/f12060690
  24. Lepais O, Petit RJ, Guichoux E, Lavabre JE, Alberto F, Kremer A, Gerber S (2009) Species relative abundance and direction of introgression in oaks. Molecular Ecology 18(10): 2228-2242. https://doi.org/10.1111/j.1365-294X.2009.04137.x
  25. Leroy T, Louvet J-M, Lalanne C, Le Provost G, Labadie K, Aury J-M, Delzon S, Plomion C, Kremer A (2020) Adaptive introgression as a driver of local adaptation to climate in European white oaks. New Phytologist 226: 1171-1182. https://doi.org/10.1111/nph.16095
  26. Li Y-L, Liu J-X (2018) StructureSelector: A web-based software to select and visualize the optimal number of clusters using multiple methods. Molecular Ecology Resources 18(1): 176-177. https://doi.org/10.1111/1755-0998.12719
  27. Lind-Riehl JF, Sullivan AR, Gailing O (2014) Evidence for selection on a CONSTANS-like gene between two red oak species. Annals of Botany 113(6): 967-975. https://doi.org/10.1093/aob/mcu019
  28. Lind J, Gailing O (2013) Genetic structure of Quercus rubra L. and Q. ellipsoidalis E. J. Hill populations at gene-based EST-SSR and nuclear SSR markers. Tree Genetics & Genomes 9: 707-722. https://doi.org/10.1007/s11295-012-0586-4
  29. Owusu SA, Sullivan AR, Weber JA, Hipp AL, Gailing O (2015) Taxonomic relationships and gene flow in four North American Quercus species. Systematic Botany 40: 510-521. https://doi.org/10.1600/036364415X688754
  30. Pintér B, Cseke K, Ladányi M, Lados BB, Bordács S (2025) Genetic analyses of a mixed oak stand at the xeric limit of forest climate and its general consequences for in situ conservation management. Forests 16(6):, 939. https://doi.org/10.3390/f16060939
  31. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155: 945-959. https://doi.org/10.1093/genetics/155.2.945
  32. Stein J, Binion D, Acciavatti R (2003) Field guide to native oak species in eastern north America. USDA Forest Service, Forest Health Technology Enterprise Team, Morgantown, West Virginia. FHTET-2003-01.
  33. Sullivan AR, Lind JF, McCleary TS, Romero-Severson J, Gailing O (2013) Development and characterization of genomic and gene-based microsatellite markers in North American red oak species. Plant Molecular Biology Reporter 31(1): 231-239. https://doi.org/10.1007/s11105-012-0495-6
  34. Sullivan AR, Owusu SA, Weber JA, Hipp AL, Gailing O (2016) Hybridization and divergent selection in multispecies oak communities. Botanical Journal of the Linnean Society 181: 99-114. https://doi.org/10.1111/boj.12393
  35. Tucker GC, Ebinger JE (2001) Status of Quercus x leana and Quercus x runcinata (Fagaceae) in Illinois. Sida 19(4):1073-1081. https://www.jstor.org/stable/41967955
  36. Whitlock R, Stewart GB, Goodman SJ, Piertney SB, Butlin RK, Pullin AS, Burke T (2013) A systematic review of phenotypic responses to between-population outbreeding. Environmental Evidence 2(1): 13. https://doi.org/10.1186/2047-2382-2-13
  37. Wilhelm G, Rericha L (2017) Flora of the Chicago Region: A Floristic and Ecological Synthesis. Indiana Academy of Science. Indianapolis, Indiana.
DOI: https://doi.org/10.2478/sg-2025-0011 | Journal eISSN: 2509-8934 | Journal ISSN: 0037-5349
Language: English
Page range: 114 - 121
Published on: Sep 20, 2025
Published by: Johann Heinrich von Thünen Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Maximilian Busenius, David M. Brandenburg, Brian Riley, Markus Müller, Oliver Gailing, published by Johann Heinrich von Thünen Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.