Have a personal or library account? Click to login
Rarity of polyploidy in Conifer: a genetic conundrum Cover

Rarity of polyploidy in Conifer: a genetic conundrum

By: M. Raj Ahuja  
Open Access
|Jul 2025

References

  1. Adams RP (2014) Junipers of the World: The Genus Juniperus. 4th ed. Trafford Publishing, Bloomington, Indiana.
  2. Adams RP, Johnson ST, Rushforth J, Farhat P, Valentine N, Siljak-Yakovlev S (2019) The origin of Juniperus xfitzeriana, an allo-tetraploid hybrid of J. chinensis x J. sabina. Phytologia 101:164-174.
  3. Adams RP, Johnson ST, Anderson J, Rushforth K, Valentin N, Siljak-Yakovlev S (2020) Nuclear and chloroplast DNA reveal diverse origins and mis-identification of Juniperus chinensis cultivar from Windsor Gardens, UK. Part 2 0f 3. Phytologia 102(3). https://doi.org/10.1111/jse.12751
  4. Ahuja MR (2001) Recent advances in molecular genetics of forest trees. Euphytica 121:173-195
  5. Ahuja MR (2005) Polyploidy in gymnosperms: Revisited. Silvae Genet 54:59-69. https://doi.org/10.1515/sg-2005-0010
  6. Ahuja M R (2009) Genetic constitution and diversity in four narrow endemic redwoods from the family Cupressaceae. Euphytica 165:5-19. https://doi.org/10.1007/s10681-008-9813-3
  7. Ahuja MR (2022) Origin and genetic nature of polyploidy in paleoendemic coast redwood (Sequoia sempervirens (D. Don) Endl.). Silvae Genet 71:54-64. https://doi.org/10.2478/sg-2022-0007
  8. Ahuja MR, Neale DB (2002) Origins of polyploidy in coast redwood (Sequoia sempervirens (D. Don) Endl.) and relationship of coast redwood to other genera of Taxodiaceae. Silvae Genet 51: 93-100. https://doi.org/10.2478/sg-2022-0007
  9. Ahuja MR, Neale DB (2005) Evolution of genome size in conifers. Silvae Genet 54:126-137 https://doi.org/10.1515/sg-2005-0020
  10. Alabrudzinska M, Skoneczny M, Skoneczna A (2011) Diploid-specific genome stability genes on S. cerevisiae: genomic screen reveals haploidization as an escape from persisting DNA rearrangement stress. PLoS ONE 6: e21124. https://doi.org/10.1371/journal.pone.0021124
  11. Allnutt TR, Newton AC, Lara A, Premoli A, Armesto JJ, Vergara R, Gardner M (1999) Genetic variation in Fitzroya cupressoides (alerce), a threatened South American conifer. Mol Ecol 8:875-987. https://doi.org/10.1046/j.1365-294x.1999.00650.x
  12. Andersson E (1947) A case of asyndesis in Picea abies. Hereditas 33:301-347. https://doi.org/10.1111/j.1601-5223.1947.tb02807.x
  13. Barker MS, Husband BC, Pires JC (2016) Spreading wings and flying high: the evolutionary importance of polyploidy after a century of study. Am J Bot 103:1139-1145. https://doi.org/10.3732/ajb.1600272
  14. Blanc G, Wolfe KH (2004) Widespread paleopolyploidy in model plant species inferred from age distribution of duplicate genes. Plant Cell 16:1667-1678. https://doi.org/10.1105/tpc.021345
  15. Borzan Z, Papes D (1978) Karyotype analysis in Pinus: A contribution to the standardization of the karyotype analysis and review of some applied techniques. Silvae Genet 27:144-150.
  16. Breidenbach N, Gailing O, Krutovsky KV (2020a) Genetic structure of cost redwood (Sequoia sempervirens [D. Don] Endl.) populations in and outside of the distribution range natural range based on nuclear and chloroplast microsatellite markers. PLoS ONE 15 (12): e0243556. https://doi.org/10.1371/journal.pone.0243556
  17. Breidenbach N, Sharov V, Gailing O, Krutovsky KV (2020b) De novo transcriptome assembly of cold stressed clones of the hexaploidy Sequoia sempervirens (D. Don) Engl. Scientific Data 7:239. https://doi.org/10.1038/s41597-020-00576-1
  18. Buchholz JT (1918) Suspensor and early embryo of Pinus. Botanical Gazette 66:195-228. https://doi.org/10.1086/332331
  19. Cai L, Xi Z, Amorim AM, Sugumaran M, Rest JS, Liu L, Davis, CC (2019) Widespread ancient whole-genome-duplications in Malpighiales coincide with Eocene global climate upheaval. New Phytologist 221:565-575. https://doi.org/10.1111/nph.15357
  20. Casola C, Koralewski TE (2018) Pinaceae elevated rates of gene turnover that are robust to incomplete gene annotation. Plant Journal 95:862-876. https://doi.org/10.1111/tpj.13994
  21. Chiba S (1951) Triploid and tetraploids of sugi (Cryptomeria japonica D. Don) selected in forest nursery Bull Govt For Station 49: 99-108. https://doi.org/10.1270/jsbbs1951.1.43
  22. Chiba S, Watanabe M (1952) Tetraploid of Larix kaempferi in the nurseries. Bull Govt For Exp Station, Tokyo, Japan 57:187-199. https://doi.org/10.2524/jtappij.9.290
  23. Christiansen H (1950) A tetraploid of Larix decidua Miller. Det Kgl Danske Vidensk Selsk 18:1-9.
  24. Critchfield WB (1975) Interspecific hybridization in Pinus: a summary review. In: Fowler D P, Yeatman CY (eds) Symposium on interspecific and interprovenance hybridization in forest trees. Proc 14th Meeting, Canada Tree Improve Association, Part II. Pp. 99-105.
  25. Critchfield WB (1967) Crossability and relationship of the closed-cone pines. Silvae Genet 16:89-97.
  26. Darlington CD (1937) Recent Advances in Cytology. J. & A. Churchill, Ltd. London. https://doi.org/10.5962/bhl.title.6597
  27. De La Torre AR, Briol I, Bousquet J, Ingvarson PK, Jansson S, Jones SJM, et al. (2014) Insights into conifer giga-genomes. Plant Physiology 166:1724-1732. https://doi.org/10.1104/pp.114.248708
  28. De Luc A, Adams RA, Zhong M (1999) Using random amplification of polymorphic DNA for a taxonomic reevaluation of Pfitzer Juniperus. HortScience 34:1123-1125. https://doi.org/10.21273/hortsci.34.6.1123
  29. Doudrick RL, Heslop-Harrison JS, Nelson CD, Schmidt T, Nance WL Schwarzacher T (1995) Karyotype of slash pine (Pinus elliottii var. elliottii) using patterns of fluorescence in situ hybridization and fluorochrome banding. J. Heredity 86:289-296. https://doi.org/10.1093/oxfordjournals.jhered.a111583
  30. Douhonikoff V, Dodd RS (2011) Lineage divergence in coast redwood (Sequoia sempervirens), detected by a set of nuclear microsatellite loci. Am Midl. Nat. 165:22-37. https://doi.org/10.1674/0003-0031-165.1.22
  31. Du Y-P, Bi Y, Zhang MF, Yang F-P, Jia GX, Zhang XH (2017) Genome size diversity in Lilium (Liliaceae) is correlated with karyotype and environment traits. Front Plant Sci. 8:1303, doi:10,3389/pls.2017.01303. https://doi.org/10.3389/fpls.2017.01303
  32. Drewry A (1988) The G-banded karyotype of Pinus resinosa Ait. Silvae Genet 37:218-221.
  33. Elguindy MM, Kopp F, Goodarzi M, Rehfeld F, Thomas A, Chang, TC, et al. (2019) PUMILIO, but not RBMX, binding is required for regulation of genomic stability by noncoding RNA NORAD. eLife 8:e48625. https://doi.org/10.7554/elife.48625
  34. Farhat P, Hidalgo O, Robert T, Siljak-Yakovlev S, Leitch IJ, Adams RP, et al. (2019) Polyploidy in conifers genus Juniperus: An unexpected high rate. Front. Plant Sci. 10:676. Doi: 10.3389/fpls. 2019.00676. https://doi.org/10.3389/fpls.2019.00676
  35. Farhat P, Siljak-Yakovlev S, Valentine N, Fabregat C, Lopez-Udias S, Salazar-Mendiaz C, et al. (2020) Gene flow between wild diploid and tetraploid junipers – two contrasting evolutionary pathways in two Juniperus populations. BMC Evolutionary Biology 20:148. Doi:org/10.1186/s12862-0202-01688-3. https://doi.org/10.1186/s12862-020-01688-3
  36. Farhat P, Siljak-Yakovlev S, Hidalgo O, Rushforth K, Bartel JA, Valentine N, et al. (2022) Polyploidy in Cupressaceous: discovery of a new naturally occurring tetraploid, Xanthcyparis vietnamensis. Journal of Systematics and Evolution 60:824-834. https://doi.org/10.1111/jse.12751
  37. Farhat P, Siljak-Yakovlev S, Takvorian N, Kharrat MBD, Robert T. (2023) Allopolyploidy- an underestimated driver in Juniperus evolution. Life 13:14n79. https://doi.org/10.3390/life13071479
  38. Farjon A (2018) Conifers of the world. Kew Bulletin 73:8. Doi 10.1007/S122250018-9738-5 https://doi.org/10.1007/s12225-018-9738-5
  39. Fox DT, Soltis DE, Soltis PS, Ashman TL, Vande Peer (2020) Polyploidy: a biological force from cells to ecosystems. Trends in Cell Biology 30:688-694. https://doi.org/10.1016/j.tcb.2020.06.006
  40. Fraver S, Gonzalez ME, Silla F, Lara A (1999) Composition and structure of remnant Fitzroya cupressoides forests of southern Chile’s Central Depression. J Torr Bot Soc 126:49-57. https://doi.org/10.2307/2997254
  41. Gadek PA, Alpers DL, Heselwood MM, Quinn CJ (2000) Relationship within Cupressaceae sensu lato: A combined morphological and molecular approach. Am J Bot 87:1044-1057. https://doi.org/10.2307/2657004
  42. Hair JB (1968) The chromosomes of the Cupressaceae. I. Tetraclineae and Actinostrobeae (Callitroideae). New Zealand J Bot 6:277-284. https://doi.org/10.1080/0028825x.1968.10428813
  43. Hall MT, Mukherjee A, Crowley WR (1973) Chromosome counts in cultivated junipers. Bot Gaz 140:364-370. https://doi.org/10.5962/p.184526
  44. Hamrick R, Godt MJW, Sherman-Broyles SL (1992) factors influencing level of genetic 5:95-124. in woody plant species, New Forests https://doi.org/10.1007/bf00120641
  45. Hida M (1957) The comparative study of Taxodiaceae from the standpoint of development of cone scales. Bot Mag Tokyo70:45-51. https://doi.org/10.15281/jplantres1887.70.44
  46. Hirayoshi I, Nakamura Y (1943) Chromosome number of Sequoia sempervirens. Bot Zool 2:73-75.
  47. Hizume M, Shibata F, Matsusaki Y, Garajova Z (2002) Chromosome identification and comparative karyotype analysis of four Pinus species. Theor Appl Genet 105:491-497. https://doi.org/10.1007/s00122-002-0975-4
  48. Hizume M, Kaneko K, Miyake T (2014) A method for preparation of meiotic chromosomes of conifers and its applicatios. Chromosome Botany 9:83-88. https://doi.org/10.3199/iscb.9.83
  49. Houminer N, Riov J, Moshelion M, Osem Y, David-Scheartz R (2022) Comparison of morphological and physiological traits between Pinus brutia, Pinus halepensis, and their vigorous F1 hybrids.Forests 13:1477. https.//doi.org/10.3390/f13091477.
  50. Ibarra-Laclette E, Lyons E, Hernandez-Guzman G, Pérez-Torres CA, Carretero-Paulet L, Chang TH, et al (2013) Architecture and evolution of a minute plant genome. Nature 498: 94-98. https://doi.org/10.1038/nature12132
  51. Illies Z (1951) Colchicineversuche an Larix decidua Miller und Picea abies (L.) Karst. Z. Forstgenetik u Forstpflanzenzüchtung 1: 36-39.
  52. Illies Z (1953) Keimlingsabnormalitäten bei Picea abies (l.) Karst. Z. Forstgenetik u. Forstpflanzenzüchtung 2:28-32.
  53. Illies Z (1957) Cytologische Beobachtungen an einer 7 jährigen CO Generation von Lärche. Silvae Genet. 6:151-152.
  54. Illies Z (1958) Polysomatie im Merristem von Einzelbaumabsaaten bei Picea abies. Silvae Genet. 7:94-97. https://doi.org/10.1007/bf00603294
  55. Illies Z (1966) The development of aneuploidy in somatic cells of experimentally produced triploid larches. Heredity 21:379-385. https://doi.org/10.1038/hdy.1966.39
  56. Illies Z (1969) Two aneuploid generations of larch hybrids derived from colchicine induced Larix sp. Proc. Second World Consulation on Forest Tree Breeding, 5p.
  57. Jagel A, Dörken V (2014) Morphology and morphogenesis of seed cones of the Cupressaceae- Part I: Cunnighamioideae, Athrotaxooideae, Tawanioidaea, Sequoiodeae, Taxodioiodeae. Bull Cco 3:117-136. https://doi.org/10.1016/j.flora.2017.03.008
  58. Jensen H, Levan A (1941) Colchicine-induced tetraploidy in Sequoiadendron giganteum. Hereditas 27:220-224.
  59. Johnsson H (1975) Observations on induced polyploidy in some conifers (Pinus sylvestris, P. contorta, Picea abies, and Larix sibirica. Silvae Genet 24:62-68.
  60. Jiao Y, Wickett N, Ayyampalayam S et al (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473:97-100. https://doi.org/10.1038/nature09916
  61. Keillander CL (1950) Polyploidy in Picea abies. Hereditas 36:513-516.
  62. Khanduja JS, Calvo IA, Joh RI, Till IT, Motamedi M (2016) Nuclear noncoding RNAs and genome stability. Molecular Cell 63:7-20. https://doi.org/10.1016/j.molcel.2016.06.011
  63. Khoshoo TN (1959) Polyploidy in gymnosperms. Evolution 13:24-39.
  64. Khoshoo TN (1961) Chromosome numbers in gymnosperms. Silvae Genet 10:1-9. https://doi.org/10.1111/j.1558-5646.1959.tb02991.x
  65. Kim CS, Lee SK (1973) Colchitriploid Pinus banksiana. Inst. For. Gen Res Rep No 10 Suwon
  66. Kremer A, Cassoli M, Barreneche T et al (2007) Fagaceae trees. In: Kole C (Ed) Genome mapping and molecular breeding of plants, Vol. 7. Springer Verlag, Berlin, pp. 162-187. https://doi.org/10.1007/978-3-540-34541-1_5
  67. Krutovskii KV, Politov DV (1995) Allozyme evidence for polyzygotic polyembryony in Siberian stone pine (Pinus sibirica Du Tour). Theoretical and Applied Genetics 90:811-818. https://doi.org/10.1007/bf00222016
  68. Ku H.-M, Vision T, Liu J, Tanksley SD (2000) Comparing sequenced segments of the tomato and Arabidopsis genomes: Large-scale duplication followed by selective gene loss creates a network of synteny. Proc Natl Acad Sci USA 97:9121-9126. https://doi.org/10.1073/pnas.160271297
  69. Kumaran R, Yang S-Y, Leu J-Y (2013) Characterization of chromosome stability in diploid, polyploidy and hybrid yeast cells. PLoS ONE 8:e68094. https://doi.org/10.1371/journal.pone.0068094
  70. Kusumi J, Tsumura Y, Yoshimaru H, Tachida H (2000) Phylogenetic relationship in Taxodiaceae and Cupressaceae sensu stricto based on matK gene, chlL gene, trnL-trnF IGS region and trnL intron sequences. Am J Bot 87:1480-1488. https://doi.org/10.2307/2656874
  71. Landis JB, Soltis DE, Li Z, Marx MS, Tank DC, et. al. (2018) Impact of whole genome duplication events on diversification in angiosperms. American Journal of Botany 105: 348-363. https://doi.org/10.1002/ajb2.1060
  72. Lara A, Villalba R (1993) A 3620-year temperature record from Fitzroya cupressoides tree rings in southern South America. Science 260:1104-1106. https://doi.org/10.1126/science.260.5111.1104
  73. Larsen SC, Westergaard M (1938) Contribution to the cytology of forest trees. I. Triploid hybrids between Larix decidua Miller & L. occidentalis Nutt Jour Genet 36:53-530. https://doi.org/10.1007/bf02982464
  74. Lee S, Kopp F, Chang T-C, et al. (2016) Noncoding RNA NORAD regulates genomic stability by sequestering PUMILIO proteins. Cell 164:69-80. https://doi.org/10.1016/j.cell.2015.12.017
  75. Lehmann R, Kovařík A, Ocalewicz K, Kirtiklis L, Zuccolo A, Tegner JN, Wanzenböck J, Bernatchez L, Lamatsch DK, Symonová R (2021) DNA transposon expansion is associated with genome size increase in mudminnows. Benome Biology 13(10) doi.10. 1093/gbe/evab228. https://doi.org/10.1093/gbe/evab228
  76. Leitch IJ, Hanson L, Winfield M, Parker J Bennett MD (2001) Nuclear DNA C-values complete familial representation in gymnosperms. Ann Bot 88:843-849. https://doi.org/10.1006/anbo.2001.1521
  77. Leitch IJ, Beaulieu JM, Cheung K, Hanson L, Lysak MA, Fay MF (2007) Punctuated genome size evolution in Liliaceae. Evol Biol 20:2296-2308. https://doi.org/10.1111/j.1420-9101.2007.01416.x
  78. Libby WJ, Anekonda TS, Kuser JE (1996) The genetic architecture of coast redwood. In: LeBlanc J (ed) Proceedings of the conference on coast redwood forest ecology and management. Humboldt State University, Arcata, California, pp. 147-149.
  79. Lohaus R, Van de Peer Y (2016) Of dups and dinos: evolution of the K/Pg boundary. Current Opinion in Plant Biology 30:62-69. https://doi.org/10.1016/j.pbi.2016.01.006
  80. Li Z, Baniaga AE, Sessa, EB, Scascitelli M, Graham, SW, Riesenberg, LH, et al. (2015) Early genome duplications in conifers and other seed plants. Sci Adv 2015;1: e1501084. https://doi.org/10.1126/sciadv.1501084
  81. Liu Y, El-Kassaby Y (2019) Novel insight into plant genome evolution and adaptation as revealed through transposable elements and non-coding RNAs in conifers. Genes 10:228, doi:10.3390/genes10030228. https://doi.org/10.3390/genes10030228
  82. Lubaretz O, Fuchs J, Ahne R, Meister A, Schubert L (1996) Karyotyping of three Pinaceae species via fluorescent in situ hybridization and computer-aided chromosome analysis. Theor Appl Genet 92:411-416. https://doi.org/10.1007/bf00223687
  83. Magadum SK, Banerjee U, Murugan P, Gangapur D, Ravikesavan R (2013) Gene duplications a major force in evolution. J Genet 92:155-161. https://doi.org/10.1007/s12041-013-0212-8
  84. Matsuda K, MIyajima H (1977) On the triploid of Cryptomeria japonica D, Don. Journal of Japanese Forest Society 59:148-150.
  85. Mehra PN, Khoshoo TN (1956) Cytology of conifers, I J Genet 54:165-180. https://doi.org/10.1007/bf02981708
  86. Mergen F (1958) Natural polyploidy in slash pine. For Sci 4:283-295. https://doi.org/10.1126/science.121.3139.306
  87. Merino I, Abrahamsson M, Sterck L, Craven-Bartle B, Canovas F, Von Arnold S (2016) Transcript profiling for early stages during embryo development in Scots pine. BMC Plant Biology 16:255. https://doi.org/10.1186/s12870-016-0939-5
  88. Miller CN (1977) Mesozoic conifers. Bot Rev 43:217-280. https://doi.org/10.1007/bf02860718
  89. Mirov NT (1967) The Genus Pinus. Ronald Press, New York. https://doi.org/10.1126/science.158.3801.626
  90. Müntzing A (1933) Hybrid incompatibility and origin of polyploidy. Hereditas 18:33-55.
  91. Nagano K, Matoba H, Yonemura K, Matsuda Y, Murata T, Hoshi Y (2007) Karyo-type analysis of three Juniperus species using fluorescence in situ hybridization (FISH) with two ribosomal RNA genes. Cytologia 72:37-42. https://doi.org/10.1508/cytologia.72.37
  92. Neale DB, Wheeler, NC (2019) The Conifers: Genomes, Variation and Evolution. Springer Verlag, Switzerland. https://doi.org/10.1007/978-3-319-46807-5_1
  93. Neale DB, Zimin AV, Zaman S, Scott AD, Shrestha B, Workman RE, et al. (2022) Assembled and annotated 26.5 Gbp coast redwood: a resource for estimating evolutionary adaptive potential and investigating hexaploid origin. G3 Genes Genomes Genetics 12:1-13. https://doi.org/10.1093/g3journal/jkab380
  94. Nishant KT, Wei W, Mancera E, Argueso JL, Schlattl A, Delhomme N, et al. (2010) The Baker’s yeast diploid genome is remarkably stable in vegetative growth and meiosis. PLoS Genet 6:e1001109. https://doi.org/10.1371/journal.pgen.1001109
  95. Nishimura S (1960) Chromosome numbers of polyembryonic seedlings of Pinus thunbergii Parl. J Jap For Sci 42:263-264.
  96. Niu S, Li J, Bo W, Yang W, Zuccolo A, Giacomello S, et al (2022) The Chinese genome and methylation unveil key features of conifer genome. Cell 185:204-207.
  97. Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin Y-C, Scofield DG, et al (2013) The Norway spruce genome sequence and conifer genome evolution. Nature 497:579-584. https://doi.org/10.1016/j.cell.2021.12.006
  98. O’Hara KL, Cox LE, Nikolaeva S, Bauer JJ, Hedges R (2017) Regeneration dynamics of coast redwood, a sprouting conifer species: a review with implications for management and restoration. Forests 8:144; https://doi.org/10.3390/f8050144
  99. Ohno S (1970) Evolution by Gene Duplication. Springer Verlag, Berlin. https://doi.org/10.1007/978-3-642-86659-3
  100. Ohri D (2021a) Polyploidy in Gymnsoperms- a reappraisal. Silvae Genet 70:22-38. https://doi.org/10.2478/sg-2021-0003
  101. Ohri D (2021b) karyotype evolution in conifers. Feddes Repertorium. https://doi.org/10.1002/fedr.202100014.
  102. Ohri D (2021c) Variation and evolution of genome size in gymnosperms. Silvae Genet 70:156-169. https://doi.org/10.1002/fedr.202100014
  103. Olson DF, Roy DF, Walters GA (1990) Sequoia sempervirens (D. Don) Endl. Redwood. In: Burns RM, Honkala BH (Technical Coordinators) Silvics of North America:1. Conifers. Agriculture Handbook. U.S. Department of Agriculture. Forest Service, Washington, pp541-551.
  104. Otto SP, Whitton J (2000) Polyploidy incidence and evolution. Annu Rev Genet 34:401-437. https://doi.org/10.1146/annurev.genet.34.1.401
  105. Panchy N, Lehti-Shiu M, Shiu S-H (2016) Evolution of gene duplication in plants. Plant Physiology 171:2294-2316. https://doi.org/10.1104/pp.16.00523
  106. Pavy N, Pelgas B, Laroche J, Rigault P, Isabel N, Bousquet J (2012) A spruce gene map infers plant genome reshuffling and subsequent slow evolution in the gymnosperm lineage leading to extant conifers. BMC Biology 1084. https://doi.org/10.1186/1741-7007-10-84
  107. Pederick LA (1970) Chromosome relationship between Pinus species. Silvae Genet 19:171-180.
  108. Premoli AC, Kitzberger T, Veblen TT (2000) Conservation genetics of the endangered conifer Fitzroya cupressoides in Chile and Argentina. Conservation Genet 1:57-66. https://doi.org/10.4206/bosque.2000.v21n1-09
  109. Ramage BS, O’Hara KL, Caldwell BT (2010) The role of fire in the competitive dynamics of coast redwood forests. Ecosphere 1(6):1-18. https://doi.org/10.1890/es10-00134.1
  110. Rastogi S, Ohri D (2020) Chromosome numbers in gymnosperms: an update. Silvae Genet 69:13-19. https://doi.org/10.2478/sg-2020-0003
  111. Reams AB, Roth JR (2015) Mechanisms of gene duplication and amplification. Cold Spring Harb Perspect Biol 5:7:a016592. https://doi.org/10.1101/cshperspect.a016592
  112. Rogers DL (1997 Inheritance of allozymes from seed tissues of the hexaploid gymnosperm, Sequoia sempervirens (D. Don. Endl.) (coast redwood). Heredity 78:166-175. https://doi.org/10.1038/sj.hdy.6881120
  113. Romo A, Hidalgo O, Boratynski A, Sobierajska K, Jasinska K, Valles J, et al. (2013) Genome size and ploidy levels in highly fragmented habitats: the case of western Mediterranean Juniperus (Cupressaceae) with special emphasis on J. thurifera. Tree Genetics and Genomes 9:587-599. https://doi.org/10.1007/s11295-012-0581-9
  114. Ruprecht C, Lohaus R, Vaneste K, Mutwil M, Nikoloski Z, Van de Peer Y, et al. (2017) Revisiting ancestral polyploidy in plants. Sci Adv 3:e1603195. https://doi.org/10.1126/sciadv.1603195
  115. Sax K, Sax HJ (1933) Chromosome numbers and morphology in the conifers. J Arnold Arboretum 14:356-375. https://doi.org/10.5962/bhl.part.9959
  116. Saylor LC (1972) Karyotype analysis of the genus Pinus - subgroup Pinus. Silvae Genet 21:155-163.
  117. Saylor LC (1983) Karyotype analysis of the genus Pinus - subgroup Strobus. Silvae Genet 32:119-124. https://doi.org/10.1508/cytologia.35.294
  118. Saylor LC, Simons HA (1970) Karyology of Sequoia sempervirens: karyotype and accessory chromosomes. Cytologia 35:294-303. https://doi.org/10.1508/cytologia.35.294
  119. Schartl M, Woltering JM, Irisari I, Du K, Kneitz S, Pippel M, et al. (2024) The genomes of all lungfish inform on genomic expansion and tetrapod evolution. Nature 634:96-103. https://doi.org/10.1038/s41586-024-07830-1
  120. Schubert I, Vu GTH (2016) Genome stability and evolution: attempting a holistic view. Trends in Plant Science 21:749-757. https://doi.org/10.1016/j.tplants.2016.06.003
  121. Scott AD, Stenz NWM, Ingvarsson PK, Baum DA (2016) Whole genome duplication in coast redwood (Sequoia sempervirens) and its implications for explaining the rarity of polyploidy in conifers. New Phytologist 211:186-193. https://doi.org/10.1111/nph.13930
  122. Sewell MM, Sherman BK, and Neale DB (1999) A consensus map for loblolly pine (Pinus taeda L.). I. Construction and integration of individual linkage maps from two outbred three-generation pedigrees. Genetics 151:321-330. https://doi.org/10.1093/genetics/151.1.321
  123. Shibata F, Matsusaki Y, Hizume M (2016) A comparative analysis of multi-probe fluorescence in situ hybridization (FISH) karyotypes in 26 Pinus species (Pinaceae). Cytologia 81:409-421. https://doi.org/10.1508/cytologia.81.409
  124. Silla F, Fraver S, Lara A, Allnutt TR, Newton A (2002) Regeneration and stand dynamics of Fitzroya cupressoides (Cupressaceae) forests of southern Chile’s central depression. For Ecol Manage 165:213-224. https://doi.org/10.1016/s0378-1127(01)00619-3
  125. Sillett SC, Kramer RD, Van Pelt R, Carroll AL, Campbbell-Spickler J, Antoine ME (2021) Comparative development of four tallest conifer species. For Ecol Manage 480:118688. https://doi.org/10.1016/j.foreco.2020.118688
  126. Stebbins GL (1948) The chromosomes and relationship of Metasequoia and Sequoia. Science 108:95-98. https://doi.org/10.1126/science.108.2796.95
  127. Stebbins GL (1951) Variation and Evolution in Plants. Columbia University Press, New York https://doi.org/10.1126/science.112.2921.764-b
  128. Stull GW, Qu X-J, Parins-Fukuchi C, Yang Y-Y, Yang J-O, Yang Z-Y, et al. (2021) Gene duplications and phylogenomic conflict underlie major pulses of phenotypic evolution in gymnosperms. Nature Plants 7:1015-1025. https://doi.org/10.1038/s41477-021-00964-4
  129. Takaso T, Tomlinson PB (1992) Seed cone and ovule ontogeny in Metasequoia, Sequoia and Sequoiadendron (Taxodiaceae, Coniferales). Bot J Linn Soc 100:15-37. https://doi.org/10.1111/j.1095-8339.1992.tb00256.x
  130. The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796-815. https://doi.org/10.1038/35048692
  131. Tredici PD (1999) Redwood burls: immortality underground. Arnoldia 59:14-22. https://doi.org/10.5962/p.251380
  132. Tuscan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596-1604.
  133. Vallés V, Garnatje T, Robin O, Siljak-Yakovlev S (2015) Molecular cytogenetics studies in western Mediterranean Juniperus (Cupressaceae): a constant model for GC-rich chromosomal regions and rDNA loci with evidence for paleopolyploidy. Tree Genetics and Genomes 11:43 https://doi.org/10.1007/s11295-015-0860-3
  134. Van de Peer Y, Maere S, Meyer A (2009) The evolutionary significance of ancient genome duplications. Nature Reviews Genetics 10:725-732. https://doi.org/10.1038/nrg2600
  135. Van de Peer Y, Mizrachi E, Marchal K (2017) The evolutionary significance of polyploidy. Nature Reviews Genetics 18:411-424. https://doi.org/10.1038/nrg.2017.26
  136. Van de Peer Y, Ashman T-L, Soltis P, Soltis D (2021) Polyploidy: an evolutionary and ecological force in stressful times. Plant Cell 33:11-26. https://doi.org/10.1093/plcell/koaa015
  137. Vaneste K, Baele G, Maere S, van de Peer Y (2014) Analysis of 41 plant genomes supports a wave of successful genome duplications in association with the Cretaceous-Paleogene boundary. Genome Research 24:1334-1347. https://doi.org/10.1101/gr.168997.113
  138. Veblen TT, Ashton DH (1982) The regeneration status of Fitzroya cupressoides in the Cordilera Pelada, Chile. Biol Cons 23:141-161. https://doi.org/10.1016/0006-3207(82)90036-2
  139. Von Arnold S, Sabala I, Bozhkov P, Dyachok J, Filonova L (2002) Developmental pathways of somatic embryogenesis. Plant Cell and Organ Culture 69:233-249. https://doi.org/10.1093/jexbot/51.343.249
  140. Voronova A, Rendon-Anaya M Ingvarsson P, Kalendar R, Rungis, D (2020) Comparative study of pine reference genomes reveal transposable element interconnected gene networks. Genes 11, 2016, https://doi:10.3390/genes11101216.
  141. Wan T, Gong Y, Liu Z, Zhou Y, Dai C, Wang Q (2022) Evolution of complex genome architecture in gymnosperms. GigaScience 11:1-10. https://doi.org/10.1093/gigascience/giac078
  142. Wang J, Lu N., Yi F, Xiao Y (2020) Identification of transposable elements in conifer and their potential application in breeding. Evolutionary Bioinformatics 16:1-4. https://doi.org/10.1177/1176934320930263
  143. Wang K, Wang J, Zhu C, Yang L, Ren Y, Ruan J. et al (2021) African lungfish genome sheds light on the vertebrate water-to-land transition. Cell 184:1362-1376. https://doi.org/10.1016/j.cell.2021.01.047
  144. Wendel JF (2000) Genome evolution in polyploids. Plant Mol Biol 42:225-249. https://doi.org/10.1007/978-94-011-4221-2_12
  145. Wendel JF (2015) The wondrous cycles of polyploidy in plants. American Journal of Botany 102:1753-1756. https://doi.org/10.3732/ajb.1500320
  146. Wolfe KH (2001) Yesterday’s polyploids and the mystery of diploidization. Nature Rev. Genet. 2:323-341 https://doi.org/10.1038/35072009
  147. Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Riesenberg LS (2009) The frequency of polyploidy speciation in vascular plants. Proc Natl Acad Sci USA 106:13875-13879. https://doi.org/10.1073/pnas.0811575106
  148. Wu S, Han B, Jiao Y (2020) Genetic contribution of paleopolyploidy to adaptive evolution in angiosperms. Molecular Plant 13:59-71. https://doi.org/10.1016/j.molp.2019.10.012
  149. Yang Z-Y, Ran J-H, Wang Z-Q (2012) Three genome-based phylogeny of Cupressaceae sI.: further evidence for the evolution of gymnosperms and southern hemisphere biography. Molecular Phylogenetics and Evolution 64:452-470. https://doi.org/10.1016/j.ympev.2012.05.004
  150. Yi F, Ling J, Xiao Y, Zhang H, Ouyang F, Wang J (2018). ConTEdb: a comprehensive database of transposable elements in conifers. https://doi.org/10.1093/database/bay131
  151. Zhang J (2003) Evolution by gene duplication: an update. Trends Ecol Evol 18:292-298. https://doi.org/10.1016/s0169-5347(03)00033-8
  152. Zhang L, Wu S, Chang X, Wang X, Zhao Y, Xia Y, et al. (2020) The ancient wave of polyploidization events in flowering plants and there facilitated adaptation to environmental stress. Plant Cell Environ 43:2847-2856. https://doi.org/10.1111/pce.13898
  153. Zhang R-G, Liu H, Shang, H-Y, Shu H, Liu D-T, Yang H, et al. (2024) Convergent patterns of karyotype evolution underlying karyotype uniformity in conifers. Advanced Science, 2411098 (1-12). https://doi.org/10.1002/advs.202411098
  154. Zinnai L (1952) Tetraploid plants in Japanese red pine (Pinus densiflora Sieb. Et Zucc.) discovered in transplant beds. J Jap For Soc 34:185-187.
  155. Zinnai L (1953) The morphological characters and the fertility of the pollen of a tetraploid Japanese red pine induced by the colchicines method. J Jap For Soc 35:245-248.
  156. Zonneveld BJM (2012) Conifer genome size of 172 species, covering 64 of 67 genera, range from 8 to 72 picogram. Nordic Journal of Botany 30:490-502. https://doi.org/10.1111/j.1756-1051.2012.01516.x
DOI: https://doi.org/10.2478/sg-2025-0009 | Journal eISSN: 2509-8934 | Journal ISSN: 0037-5349
Language: English
Page range: 88 - 101
Published on: Jul 11, 2025
Published by: Johann Heinrich von Thünen Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 M. Raj Ahuja, published by Johann Heinrich von Thünen Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.