Have a personal or library account? Click to login
Adaptability of twelve European provenances of Pinus cembra in two different branches of the Carpathians Cover

Adaptability of twelve European provenances of Pinus cembra in two different branches of the Carpathians

Open Access
|Jun 2025

References

  1. Ammer C (2019) Diversity and forest productivity in a changing climate. New Phytologist 22:50-66. https://doi.org/10.1111/nph.15263
  2. Bastin J F, de Haulleville T, Maniatis D, Marchi G, Massaccesi E, Mollicone D, Papa C, Pregagno C (2020) Tree Restoration Potential in the European Union. FAO and European Commission Directorate General for Environment (DG ENV) https://doi.org/10.13140/RG.2.2.24811.67368/1
  3. B4EST (2024) Adaptive breeding for better forests. Climate database available online: http://www.b4est.eu/ (accessed on July, 2024).
  4. Blada I (1987) Cercetări asupra rezistenței genetice la Cronartium ribicola a unor hibrizi interspecifici (Research on the genetic resistance to Cronartium ribicola of some interspecific hybrids). PhD thesis, A.S.A.S., Bucharest, 146 p. (in Romanian)
  5. Blada I (1999) Diallel crossing in Pinus cembra. III. Analysis of genetic variation at the nursery stage. Silvae Genetica 48(3-4):179-187.
  6. Blada I, Popescu F (2007) Swiss stone pine provenance experiment in Romania. II Variation in growth and branching traits to age 14. Silvae Genetica 56(3-4):148-158. https://doi.org/10.1515/sg-2007-0023
  7. Blada I, Popescu F (2008) Diallel crossing in Pinus cembra. IV. Age trends in genetic parameters and genetic gain for growth and branching traits. Annals of Forest Research 51:89-113. https://doi.org/10.1515/sg-2012-0009
  8. Blada I, Popescu F (2012) Diallel crossing in Pinus cembra: age trends in genetic parameters and genetic gain for height. Silvae Genetica 61(1-2):66-79. https://doi.org/10.1515/sg-2012-0009
  9. Blada I (2019) Memoriu de activitate 1961-2007 (Activity memory 1961-2007). Silvică Publishing House, Bucharest, 51 p. ISBN: 978-606-8020-62-4 (in Romanian)
  10. Belokon M M, Belokon Y S, Politov D V, Altukhov Y P (2005) Allozyme polymorphism of Swiss stone pine Pinus cembra L. in mountain populations of the Alps and the Eastern Carpathians. Russian Journal of Genetics 41:1268-1280. https://doi.org/10.1007/s11177-005-0228-0
  11. Budeanu M, Apostol E N, Popescu F, Postolache D, Ioniţă L (2019) Testing of the narrow crowned Norway spruce ideotype (Picea abies f. pendula) and the hybrids with normal crown form (pyramidalis) in multisite comparative trials. Science of the Total Environment 689:980-990. https://doi.org/10.1016/j.scitotenv.2019.06.518
  12. Budeanu M, Şofletea N, Petriţan IC (2014) Among-population variation in quality traits in two Romanian provenance trials with Picea abies L. Baltic Forestry 20(1):37-47. https://doi.org/10.1515/sg-2012-0022
  13. Budeanu M, Popescu F, Besliu E, Apostol E N (2024) Adaptability of Swiss stone pine (Pinus cembra) in two different environmental conditions of Romanian Carpathians. Applied Sciences 14(16), 7428, 12 p. https://doi.org/10.3390/app14167428
  14. Caudullo G, de Rigo D (2016) Pinus cembra in Europe: distribution, habitat, usage and threats: European atlas of forest tree species (ed. San Miguel-Ayanz J., de Rigo D., Caudullo G., Houston Durrant T., Mauri A.). Publication Office of the European Union, Luxembourg City, Luxembourg, pp. 120-121.
  15. Caudullo G, Welk E, San-Miguel-Ayanz J (2017) Chorological maps for the main European woody species. Data in Brief 12:662-666. https://doi.org/10.1016/j.dib.2017.05.007
  16. Chakraborty D, Ciceu A, Ballian D, et al (2024) Assisted tree migration can preserve the European forest carbon sink under climate change. Nature Climate Change 14:845-852. https://doi.org/10.1038/s41558-024-02080-5
  17. Dauphin B, Rellstab C, Schmid M, Zoller S, Karger DN, Brodbeck S, Guillaume F, Gugerli F (2021) Genomic vulnerability to rapid climate warming in a tree species with a long generation time. Global Change Biology 27:1181-1195. https://doi.org/10.1111/gcb.15469
  18. Ducci F., De Cuyper B., Proietti R., Pâques L., Wolf H., 2012. TREEBREEDEX, research infrastructure network 2006-2011. Reference protocols for assessment of traits and reference genotypes to be used as standards in international research projects. CRA SEL Publishing House, Arezzo, Italy, 82 p.
  19. Dzialuk A, Chybicki I, Gout R, Maczka T, Fleischer P, Konrad H, Curtu A L, Şofletea N, Valadon A 2014. No reduction in genetic diversity of Swiss stone pine (Pinus cembra L.) in Tatra Mountains despite high fragmentation and small population size. Conservation Genetics 15:1433-1445. https://doi.org/10.1007/s10592-014-0628-6
  20. Eichhorn J, Roskams P, Potočić N, Timmermann V, Ferretti M, Mues V, Szepesi A, Durrant D, Seletković I, Schröck H‐W, Nevalainen S, Bussotti F, Garcia P, Wulff S (2020) Part IV: Visual assessment of crown condition and damaging agents. Version 2020-3. In: UNECE ICP Forests Programme Coordinating Centre (ed.): Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. Thünen Institute of Forest Ecosystems, Eberswalde, Germany, 49 p. (+Annex). Available at: http://www.icp-forests.org/manual.htm.
  21. Funk W C, McKay J C, Hohenlohe P A, Allendorf F W (2012) Harnessing genomics for delineating conservation units. Trends in Ecology & Evolution 9:489-496. https://doi.org/10.1016/j.tree.2012.05.012
  22. Giurgiu V, Decei I, Drăghiciu D (2004) Metode şi tabele dendrometrice (Methods and dendrometrical tables). Ceres Publishing House, Bucharest, Romania, 575 p. ISBN: 973-40-0639-8 (in Romanian)
  23. Gugerli F, Brodbeck S, Bebi P, Bollmann K, Dauphin B, Gossner M, Krumm F, Peter M, Queloz V, Reiss G, Rellstab C, Stofer S, von Arx G, Wasem U, Zweifel R (2022) Swiss stone pine - portrait of a mountain forest tree. Fact sheet 72, 16 p. https://doi.org/10.55419/wsl:32467
  24. Gugerli F, Brodbeck S, Lendvay B, Dauphin B, Bagnoli F, van der Knaap WO, Tinner W, Höhn M, Vendramin GG, Morales-Molino C, Schwörer C (2023) A range-wide postglacial history of Swiss stone pine based on molecular markers and palaeoecological evidence. Journal of Biogeography 50:1049-1062. https://doi.org/10.1111/jbi.14586
  25. Höhn M, Gugerli F, Abran P, Bisztray G, Buonamici A, Cseke K, Hufnagel L, Sebastiani F, Quintela-Sabaris S, Vendramin G G (2009) Variation in the chloroplast DNA of Swiss stone pine (Pinus cembra L) reflects contrasting postglacial history of populations from the Carpathians and the Alps. Journal of Biogeography 36:1798-1806. https://doi.org/10.1111/j.1365-2699.2009.02122.x
  26. Izworska K, Muter E, Matulewski P, Zielonka T, (2023) Tree rings as an ecological indicator of the reaction of Swiss stone pine (Pinus cembra L.) to climate change and disturbance regime in the extreme environment of cliff forests. Ecological Indicators 148, 110102, 12 p. https://doi.org/10.1016/j.ecolind.2023.110102.
  27. Jandl R, Spathelf P, Bolte A, Prescott CE (2019) Forest adaptation to climate change-is non-management an option? Annals of Forest Science 76, 48, 13 p. https://doi.org/10.1007/s13595-019-0827-x
  28. Lendvay B, Höhn M, Brodbeck S, Mîndrescu M, Gugerli F (2014) Genetic structure in Pinus cembra from the Carpathian Mountains inferred from nuclear and chloroplast microsatellites confirms post-glacial range contraction and identifies introduced individuals. Tree Genetics & Genomes 10:1419-1433. https://doi.org/10.1007/s11295-014-0770-9
  29. Leonelli G, Pelfini M, Battipaglia G, Cherubini P (2009) Site-aspect influence on climate sensitivity over time of a high-altitude Pinus cembra tree-ring network. Climatic Change 96:185-201. https://doi.org/10.1007/s10584-009-9574-6
  30. Li M-H, Yang J (2004) Effects of microsite on growth of Pinus cembra in the subal-pine zone of the Austrian Alps. Annals of Forest Science 61:319-325. https://doi.org/10.1051/forest:2004025
  31. Liang J, Crowther T, Picard N, et al (2016) Positive biodiversity-productivity relationship predominant in global forests. Science 354(6309), https://doi.org/10.1126/science.aaf8957
  32. Marčiš P, Rybár J, Šebeň V, Murgaš V, Sitková Z (2025) Picea abies and Pinus cembra at high altitudes show different growth reaction to rising temperatures: Study from the Western Carpathian subalpine forests. Dendrochronologia 91(4), 126325. https://doi.org/10.1016/j.dendro.2025.126325
  33. Morgan T J, Evans M A, Garland T, Swallow J G, Carter P A (2005) Molecular and quantitative genetic divergence among populations of house mice with known evolutionary histories. Heredity 94:518-525. https://doi.org/10.1038/sj.hdy.6800652
  34. Mosca E, Gugerli F, Eckert A J, Neale D B (2016) Signatures of natural selection on Pinus cembra and P. mugo along elevational gradients in the Alps. Tree Genetics & Genomes 12, 6. https://doi.org/10.1007/s11295-015-0964-9
  35. Nabuurs G, Lindner M, Verkerk H, Gunia K, Deda P, Michalak R, Grassi G (2013) First signs of carbon sink saturation in European forest biomass. Nature Climate Change 3:792-796. https://doi.org/10.1038/nclimate1853
  36. Nanson A (2004) Genetic and forest trees breeding. Ed. Gembloux, Belgium, 712 p. ISBN: 978-287-0160-70-1 (in French)
  37. Neuschulz EL, Merges D, Bollmann K, Gugerli F, Böhning-Gaese K (2018) Biotic interactions and seed deposition rather than abiotic factors determine recruitment at elevational range limits of an alpine tree. Journal of Ecology 106:948-959. https://doi.org/10.1111/1365-2745.12818
  38. Paulsen J, Weber UM, Körner C (2000) Tree growth near treeline: abrupt or gradual reduction with altitude? Arctic, Antarctic, and Alpine Research 32:14-20. https://doi.org/10.1080/15230430.2000.12003334
  39. Pliura A, Eriksson G (2002) Genetic variation in juvenile height and biomass of open-pollinated families of six Castanea sativa Mill. populations in a 2 x 2 factorial temperature x watering experiment. Silvae Genetica 51(4):152-160.
  40. Politov D V, Belokon M M, Belokon Y S (2008) Alloenzymatic variation in Pinus cembra and P. sibirica: differentiation between populations and species. Annals of Forest Research 51:143-144.
  41. QGIS Development Team (2024) QGIS Geographic Information System. Open-Source Geospatial Foundation Project. Available online: http://qgis.osgeo.org (accessed on 10 August 2024)
  42. R Core Team (2023) R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria. Available online: https://www.r-project.org/ (accessed on August 12, 2024).
  43. Salzer K, Gugerli F (2012) Reduced fitness at early life stages in peripheral versus core populations of Swiss stone pine (Pinus cembra) is not reflected by levels of inbreeding in seed families. Alpine Botany 122:75-85. https://doi.org/10.1007/s00035-012-0106-z
  44. Saura M, Perez-Figueroa A, Fernandez J, Toro M, Caballero A (2008) Preserving population allele frequencies in ex situ conservation programs. Conservation Biology 22:1277-1287. https://doi.org/10.1111/j.1523-1739.2008.00992.x
  45. Sonnenwyl V, Dauphin B, Fragnière Y, Clément B, Grünig S, Brodbeck S, Parisod C, Kozlowski G, Gugerli F (2024) Genetic underpinning of historical afforestation with allochthonous Pinus cembra in the northwestern Swiss Alps. Alpine Botany 134:1-13. https://doi.org/10.1007/s00035-023-00304-6
  46. Spathelf P, Stanturf J, Kleine M, Jandl R, Chiatante D, Bolte A (2018) Adaptive measures: integrating adaptive forest management and forest landscape restoration. Annals of Forest Science 75, 55, 6p. https://doi.org/10.1007/s13595-018-0736-4
  47. Statistica 10.0 (2010) StatSoft Inc., Tulsa, OK, USA.
  48. Știrbu M-I, Roibu C-C, Carrer M, Mursa A, Unterholzner L, Prendin AL (2022) Contrasting climate sensitivity of Pinus cembra tree-ring traits in the Carpathians. Frontiers in Plant Science 13, 855003, 11 p. https://doi.org/10.3389/fpls.2022.855003
  49. Tóth E G, Tremblay F, Housset J M, Bergeron Y, Carcaillet C (2019) Geographic isolation and climatic variability contribute to genetic differentiation in fragmented populations of the long-lived subalpine conifer Pinus cembra L. in the western Alps. BMC Evolutionary Biology 19, 190, 17 p. https://doi.org/10.1186/s12862-019-1510-4
  50. Ulber M, Gugerli F, Bozic G (2004) EUFORGEN. Technical Guidelines for genetic conservation and use for Swiss stone pine (Pinus cembra). Biodiversity International. Available at: https://hdl.handle.net/10568/104342
  51. Viersma Wiersma J H (1962) Enkete kwantitatieve aspecten van het exotenvraagstuk. Nederlands Bosbouw Tijtschrift 34(5):175-184.
  52. Wieser G, Manning W J, Tausz M, Bytnerowicz A (2006) Evidence for potential impacts of ozone on Pinus cembra L. at mountain sites in Europe: An overview. Environmental Pollution 139(1):53-58. https://doi.org/10.1016/j.envpol.2005.04.037
  53. Wojnicka-Półtorak A, Celiński K, Chudzińska E, Prus-Głowacki W, Niemtur S (2015) Genetic resources of Pinus cembra L. Marginal populations from the Tatra mountains: implications for conservation. Biochemical Genetics 5:49-61. https://doi.org/10.1007/s10528-015-9670-4
  54. Zięba A, Różański W, Bukowski M, Ciesielska B, Szwagrzyk J (2019) Distribution and habitat conditions of Pinus cembra forests in the Tatra Mountains. Dendrobiology 81:86-96. http://dx.doi.org/10.12657/denbio.081.010
DOI: https://doi.org/10.2478/sg-2025-0007 | Journal eISSN: 2509-8934 | Journal ISSN: 0037-5349
Language: English
Page range: 63 - 76
Published on: Jun 21, 2025
Published by: Johann Heinrich von Thünen Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Marius Budeanu, Flaviu Popescu, Ecaterina Nicoleta Apostol, Ioana Maria Pleșca, Emanuel Besliu, published by Johann Heinrich von Thünen Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.