Have a personal or library account? Click to login
Variation in seed traits, leaf phenology and growth performance among sessile oak provenances from Baden-Württemberg and Alsace Cover

Variation in seed traits, leaf phenology and growth performance among sessile oak provenances from Baden-Württemberg and Alsace

Open Access
|May 2025

References

  1. Aas, D. G. (2008). In: H. Weisgerber, A. Roloff, U. Lang, B. Stimm (Eds.), Enzyklopädie Der Holzgewächse, Handbuch und Atlas der Dendrologie. Wiley-VCH, Weinheim, pp. 1-16. https://doi.org/10.1002/9783527678518.ehg2000020
  2. Adams, J. P., Rousseau, R. J., Adams, J. C. (2007). Genetic Performance and Maximizing Genetic Gain Through Direct and Indirect Selection in Cherrybark Oak. Silvae Genetica, 56(1–6), 80–87. https://doi.org/10.1515/sg-2007-0012
  3. Aitken, S. N., Bemmels, J. B. (2016). Time to get moving: Assisted gene flow of forest trees. Evolutionary Applications, 9(1), 271–290. https://doi.org/10.1111/eva.12293
  4. Alberto, F., Bouffier, L., Louvet, J.-M., Lamy, J.-B., Delzon, S., Kremer, A. (2011). Adaptive responses for seed and leaf phenology in natural populations of sessile oak along an altitudinal gradient: Variation of phenological traits in Q. petraea. Journal of Evolutionary Biology, 24(7), 1442–1454. https://doi.org/10.1111/j.1420-9101.2011.02277.x
  5. Baliuckas, V., Pliura, A. (2003). Genetic Variation and Phenotypic Plasticity of Quercus robur Populations and Open-pollinated Families in Lithuania. Scandinavian Journal of Forest Research, 18(4), 105–319. https://doi.org/10.1080/02827580310005153
  6. Bußler, H. (2014). Käfer und Großschmetterlinge an der Traubeneiche.
  7. Campelo, F., Rubio-Cuadrado, Á., Montes, F., Colangelo, M., Valeriano, C., & Camarero, J. J. (2023). Growth phenology adjusts to seasonal changes in water availability in coexisting evergreen and deciduous mediterranean oaks. Forest Ecosystems, 10, 100134. https://doi.org/10.1016/j.fecs.2023.100134
  8. Dittmar, C., Fricke, W., Elling, W. (2006). Impact of late frost events on radial growth of common beech (Fagus sylvatica L.) in Southern Germany. European Journal of Forest Research, 125(3), 249–259. https://doi.org/10.1007/s10342-005-0098-y
  9. Donohue, K. (2009). Completing the cycle: maternal effects as the missing link in plant life histories. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1520), 1059-1074. https://doi.org/10.1098/rstb.2008.0291
  10. Ducousso, A., Guyon, J., Krémer, A. (1996). Latitudinal and altitudinal variation of bud burst in western populations of sessile oak (Quercus petraea (Matt) Liebl). Annales Des Sciences Forestières, 53(2–3), 775–782. https://doi.org/10.1051/forest:19960253
  11. Fick, S. E., Hijmans, R. J. (2017). Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology. [dataset]. https://doi.org/10.1002/joc.5086
  12. Firmat, C., Delzon, S., Louvet, J.-M., Parmentier, J., Kremer, A. (2017). Evolutionary dynamics of the leaf phenological cycle in an oak metapopulation along an elevation gradient. Journal of Evolutionary Biology, 30(12), 2116–2131. https://doi.org/10.1111/jeb.13185
  13. Fox, J., Weisberg, S., Adler, D., Bates, D., Baud-Bovy, G., Ellison, S., Firth, D., Friendly, M., Gorjanc, G., Graves, S. and Heiberger, R. (2012). Package ‘car’. Vienna: R Foundation for Statistical Computing, 16(332), p.333 https://doi.org/10.32614/rj-2013-004
  14. Gafenco, I. M., Pleșca, B. I., Apostol, E. N., Șofletea, N. (2022). Spring and Autumn Phenology in Sessile Oak (Quercus petraea) Near the Eastern Limit of Its Distribution Range. Forests, 13(7), 1125. https://doi.org/10.3390/f13071125
  15. Gallinat, A. S., Primack, R. B., Wagner, D. L. (2015). Autumn, the neglected season in climate change research. Trends in Ecology & Evolution, 30(3), 169–176. https://doi.org/10.1016/j.tree.2015.01.004
  16. Gil-Pelegrín, E., Peguero-Pina, J. J., Sancho-Knapik, D. (Eds.). (2017). Oaks Physiological Ecology. Exploring the Functional Diversity of Genus Quercus L. (Vol. 7). Springer International Publishing. https://doi.org/10.1007/978-3-319-69099-5
  17. González-Rodríguez, V., Villar, R., Navarro-Cerrillo, R. M. (2011). Maternal influences on seed mass effect and initial seedling growth in four Quercus species. Acta Oecologica, 37(1), 1–9. https://doi.org/10.1016/j.actao.2010.10.006
  18. Grotehusmann, H., Schönfelder, E. (2011). Comparison of French and German sessile oak (Quercus petraea (Matt.) Liebl.) provenances. Silvae Genetica, 60(1–6), 186–196. https://doi.org/10.1515/sg-2011-0025
  19. Hagen-Thorn, A., Varnagiryte, I., Nihlgård, B., Armolaitis, K. (2006). Autumn nutrient resorption and losses in four deciduous forest tree species. Forest Ecology and Management, 228(1–3), 33–39. https://doi.org/10.1016/j.foreco.2006.02.021
  20. Hanewinkel, M., Cullmann, D. A., Schelhaas, M.-J., Nabuurs, G.-J., Zimmermann, N. E. (2013). Climate change may cause severe loss in the economic value of European forest land. Nature Climate Change, 3(3), 203–207. https://doi.org/10.1038/nclimate1687
  21. Harper, J. L., Obeid, M. (1967). Influence of Seed Size and Depth of Sowing on the Establishment and Growth of Varieties of Fiber and Oil Seed Flax. Crop Science, 7(5), 527–532. https://doi.org/10.2135/cropsci1967.0011183X000700050036x
  22. Jablonski, E. (2014). Quercus. In B. Stimm, A. Roloff, U. M. Lang, H. Weisgerber (Eds.), Enzyklopädie der Holzgewächse: Handbuch und Atlas der Dendrologie (pp. 1–24). Wiley-VCH Verlag GmbH & Co. KGaA. https://doi.org/10.1002/9783527678518.ehg2014003
  23. Jensen, J. S. (2000). Provenance Variation in Phenotypic Traits in Quercus robur and Quercus petraea in Danish Provenance Trials. Scandinavian Journal of Forest Research, 15(3), 297–308. https://doi.org/10.1080/028275800447922
  24. Jensen, J. S., Hansen, J. K. (2008). Geographical variation in phenology of Quercus petraea (Matt.) Liebl and Quercus robur L. oak grown in a greenhouse. Scandinavian Journal of Forest Research, 23(2), 179–188. https://doi.org/10.1080/02827580801995331
  25. Johnson, P. S., Shifley, S. R., Rogers, R., Dey, D. C., Kabrick, J. M. (2019). The ecology and silvi-culture of oaks (3rd edition). CABI.
  26. Keenan, R. J. (2015). Climate change impacts and adaptation in forest management: A review. Annals of Forest Science, 72(2), 145–167. https://doi.org/10.1007/s13595-014-0446-5
  27. Keskitalo, J., Bergquist, G., Gardeström, P., Jansson, S. (2005). A Cellular Timetable of Autumn Senescence. Plant Physiology, 139(4), 1635–1648. https://doi.org/10.1104/pp.105.066845
  28. Kleinschmit, J. (1993). Intraspecific variation of growth and adaptive traits in European oak species. Annales Des Sciences Forestières, 50(Supplement), 166s–185s. https://doi.org/10.1051/forest:19930716
  29. Kuser, J. E., Ching, K. K. (1980). Provenance Variation in Phenology and Cold Hardiness of Western Hemlock Seedlings. Forest Science, 26(3), 463–470. https://doi.org/10.1093/forestscience/26.3.463
  30. Landergott, U., Gugerli, F., Hoebee, S. E., Finkeldey, R., Holderegger, R. (2012). Effects of seed mass on seedling height and competition in European white oaks. Flora-Morphology, Distribution, Functional Ecology of Plants, 207(10), 721-725. https://doi.org/10.1016/j.flora.2012.09.001
  31. Le Provost, G., Lalanne, C., Lesur, I., Louvet, J.-M., Delzon, S., Kremer, A., Labadie, K., Aury, J.- M., Da Silva, C., Moritz, T., & Plomion, C. (2023). Oak stands along an elevation gradient have different molecular strategies for regulating bud phenology. BMC Plant Biology, 23(1), 108. https://doi.org/10.1186/s12870-023-04069-2
  32. Lindner, M., Maroschek, M., Netherer, S., Kremer, A., Barbati, A., Garcia-Gonzalo, J., Seidl, R., Delzon, S., Corona, P., Kolström, M., Lexer, M. J., Marchetti, M. (2010). Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology and Management, 259(4), 698–709. https://doi.org/10.1016/j.foreco.2009.09.023
  33. Modrow, T., Kuehne, C., Saha, S., Bauhus, J., Pyttel, P. L. (2020). Photosynthetic performance, height growth, and dominance of naturally regenerated sessile oak (Quercus petraea [Mattuschka] Liebl.) seedlings in small-scale canopy openings of varying sizes. European Journal of Forest Research, 139(1), 41–52. https://doi.org/10.1007/s10342-019-01238-7
  34. Morin, X., Roy, J., Sonié, L., Chuine, I. (2010). Changes in leaf phenology of three European oak species in response to experimental climate change. New Phytologist, 186(4), 900–910. https://doi.org/10.1111/j.1469-8137.2010.03252.x
  35. Neophytou, C., Braun, A., Semizer-Cuming, D., Fussi, B., Mück, I., Schlosser, F., Seegmüller, S., Michiels, H.-G. (2020). Angepasste Eichen auf Reliktstandorten. Eine zukünftige Quelle für forstliches Vermehrungsgut? In: Liesebach, M. (Ed.) Forstpflanzenzüchtung für die Praxis: 6. Tagung der Sektion Forstgenetik/Forstpflanzenzüchtung vom 16. bis 18. September 2019 in Dresden; Tagungsband, Johann Heinrich von Thünen-Institut, pp. 37–48 https://doi.org/10.3220/REP1584625360000
  36. Neophytou, C., Semizer-Cuming, D., Michiels, H.-G., Kremer, A., Jansen, S., Fussi, B. (2024). Relict stands of Central European oaks: Unravelling autochthony and genetic structure based on a multi-population study. Forest Ecology and Management, 551, 121554. https://doi.org/10.1016/j.foreco.2023.121554
  37. Ningre, F., Colin, F. (2007). Frost damage on the terminal shoot as a risk factor of fork incidence on common beech (Fagus sylvatica L.). Annals of Forest Science, 64(1), 79–86. https://doi.org/10.1051/forest:2006091
  38. R Core Team. (2022). R: A language and Environment for Statistical Computing. https://www.R-project.org/
  39. Ramírez-Valiente, J. A., Valladares, F., Gil, L., Aranda, I. (2009). Population differences in juvenile survival under increasing drought are mediated by seed size in cork oak (Quercus suber L.). Forest Ecology and Management, 257(8), 1676-1683. https://doi.org/10.1016/j.foreco.2009.01.024
  40. Roach, D. A., Wulff, R. D. (1987). Maternal effects in plants. Annual Review of Ecology and Systematics, 209-235
  41. Sáenz‐Romero, C., Lamy, J. B., Ducousso, A., Musch, B., Ehrenmann, F., Delzon, S., Cavers, S., Chałupka, W., Dağdaş, S., Hansen, J. K., Lee, S. J., Liesebach, M., Rau, H.-M., Psomas, A., Schneck, V., Steiner, W., Zimmermann, N. E., Kremer, A. (2017). Adaptive and plastic responses of Quercus petraea populations to climate across Europe. Global Change Biology, 23(7), 2831-2847. https://doi.org/10.1111/gcb.13576
  42. Sang, Z., Hamann, A., Aitken, S. N. (2021). Assisted migration poleward rather than upward in elevation minimizes frost risks in plantations. Climate Risk Management, 34, 100380. https://doi.org/10.1016/j.crm.2021.100380
  43. Schüler, S., Liesebach, M., von Wuehlisch, G. (2012). Genetische Variation und Plastizität des Blattaustriebs von Herkünften der Rot-Buche.
  44. Schwinning, S., Lortie, C. J., Esque, T. C., DeFalco, L. A. (2022). What common‐garden experiments tell us about climate responses in plants. Journal of Ecology, 110(5), 986–996. https://doi.org/10.1111/1365-2745.13887
  45. Stanton, M. L. (1984). Developmental and Genetic Sources of Seed Weight Variation in Raphanus raphanistrum L. (Brassicaceae). American Journal of Botany, 71(8), 1090–1098.
  46. Stanturf, J. A., Ivetić, V., Kasten Dumroese, R. (2024). Framing recent advances in assisted migration of Trees: A Special Issue. Forest Ecology and Management, 551, 121552. https://doi.org/10.1016/j.foreco.2023.121552
  47. Torres-Ruiz, J. M., Kremer, A., Carins Murphy, M. R., Brodribb, T., Lamarque, L. J., Truffaut, L., Bonne, F., Ducousso, A., & Delzon, S. (2019). Genetic differentiation in functional traits among European sessile oak populations. Tree Physiology, 39(10), 1736–1749. https://doi.org/10.1093/treephys/tpz090
  48. Tripathi, R. S., Khan, M. L. (1990). Effects of Seed Weight and Microsite Characteristics on Germination and Seedling Fitness in Two Species of Quercus in a Subtropical Wet Hill Forest. Oikos, 57(3), 289. https://doi.org/10.2307/3565956
  49. Van Dooren, T. J. M., Hoyle, R. B., Plaistow, S. J. (2016). Maternal effects. In: Kliman R, ed. The encyclopedia of evolutionary biology. Oxford, UK: Academic Press, 446–452. https://doi.org/10.1016/B978-0-12-800049-6.00051-2
  50. Vitasse, Y., Delzon, S., Bresson, C. C., Michalet, R., Kremer, A. (2009). Altitudinal differentiation in growth and phenology among populations of temperate-zone tree species growing in a common garden. Canadian Journal of Forest Research, 39(7), 1259–1269. https://doi.org/10.1139/X09-054
  51. Vivas, M., Wingfield, M. J., Slippers, B. (2020). Maternal effects should be considered in the establishment of forestry plantations. Forest Ecology and Management, 460, 117909. https://doi.org/10.1016/j.foreco.2020.117909
  52. Wunderlich, L., Forreiter, L., Lingenfelder, M., Konnert, M., Neophytou, C. (2017). Macht die Herkunft den Unterschied? Ergebnisse der Nachkommenschaftsprüfungen von Stieleiche (Quercus robur L.) und Fichte (Picea abies (L.) KARST.) in Baden-Württemberg. ALLGEMEINE FORST UND JAGDZEITUNG, 188(9–10), 153–167. https://doi.org/10.23765/afjz0002010
DOI: https://doi.org/10.2478/sg-2025-0005 | Journal eISSN: 2509-8934 | Journal ISSN: 0037-5349
Language: English
Page range: 31 - 43
Published on: May 24, 2025
Published by: Johann Heinrich von Thünen Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Nora Losch, Katrin Heer, Benjamin Dudschuss, Devrim Semizer-Cuming, Hans-Gerhard Michiels, Charalambos Neophytou, published by Johann Heinrich von Thünen Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.