Have a personal or library account? Click to login
Impact of progeny size on genetic parameter estimation and selection gain in progeny trials of Eucalyptus spp. Cover

Impact of progeny size on genetic parameter estimation and selection gain in progeny trials of Eucalyptus spp.

Open Access
|May 2025

References

  1. Amâncio MR, Andrade MC, Paludeto JGZ, et al (2020) Accuracy of genetic parameters estimation and prediction of genotypic values in eucalyptus using different plot types. Cerne 26:482–490. https://doi.org/10.1590/01047760202026042710
  2. Baccarin FJB, Brondani GE, de Almeida LV, et al (2015) Vegetative rescue and cloning of Eucalyptus benthamii selected adult trees. New For 46:465–483. https://doi.org/10.1007/S11056-015-9472-X/TABLES/7
  3. Bates D, Maechler M, Bolker B, et al (2022) Linear Mixed-Effects Models using “Eigen” and S4 [R package lme4 version 1.1-30]. CRAN
  4. Benavente CAT, Pinto CABP (2012) Selection intensities of families and clones in potato breeding. Ciência e Agrotecnologia 36:60–68. https://doi.org/10.1590/S1413-70542012000100008
  5. Bernardo R (2020) Reinventing quantitative genetics for plant breeding: something old, something new, something borrowed, something BLUE. Hered 2020 1256 125:375–385. https://doi.org/10.1038/s41437-020-0312-1
  6. Bison O, Ramalho MAP, Peçanha Rezende GDS, et al (2007) Combining ability of elite clones of Eucalyptus grandis and Eucalyptus urophylla with Eucalyptus globulus. Genet Mol Biol 30:417–422. https://doi.org/10.1590/S1415-47572007000300019
  7. Brizola GEA, Peres FSB, Silva PHM, et al (2024) Maximizing Eucalyptus pilularis progeny selection using a parentage matrix obtained with microsatellite markers. Euphytica 220:1–13. https://doi.org/10.1007/S10681-024-03356-9/FIGURES/2
  8. Butler DG, Cullis BR, Gilmour AR, et al (2017) ASReml-R Reference Manual Version 4 ASReml estimates variance components under a general linear mixed model by residual maximum likelihood (REML). Hemel Hempstead, UK
  9. Castro CA de O, Resende RT, Bhering LL, Cruz CD (2016) Brief history of Eucalyptus breeding in Brazil under perspective of biometric advances. Ciência Rural 46:1585–1593. https://doi.org/10.1590/0103-8478CR20150645
  10. Chaves SFS, Dias LAS, Alves RS, et al (2024) Realized genetic gain with reciprocal recurrent selection in a Eucalyptus breeding program. Tree Genet Genomes 2024 206 20:1–13. https://doi.org/10.1007/S11295-024-01678-2
  11. Danusevičius D, Lindgren D (2004) Progeny testing preceded by phenotypic pre-selection - Timing considerations. Silvae Genet 53:20–26. https://doi.org/10.1515/SG-2004-0004
  12. Doran JC, Matheson AC (1994) Genetic parameters and expected gains from selection for monoterpene yields in Petford Eucalyptus camaldulensis. New For 1994 82 8:155–167. https://doi.org/10.1007/BF00028191
  13. Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman, Essex, England
  14. Gilmour AR, Thompson R, Cullis BR (1995) Average Information REML: An Efficient Algorithm for Variance Parameter Estimation in Linear Mixed Models. Biometrics 51:1440. https://doi.org/10.2307/2533274
  15. Griffin AR (2014) Clones or improved seedlings of Eucalyptus? Not a simple choice. Int For Rev 16:216–224. https://doi.org/10.1505/146554814811724793
  16. Hannrup B, Jansson G, Danell Ö (2007) Comparing gain and optimum test size from progeny testing and phenotypic selection in Pinus sylvestris. Can J For Res 37:1227–1235. https://doi.org/10.1139/X07-005
  17. Hodge GR, Volker PW, Potts BM, Owen J V. (1996) A comparison of genetic information from open-pollinated and control- pollinated progeny tests in two eucalypt species. Theor Appl Genet 92:53–63. https://doi.org/10.1007/BF00222951/METRICS
  18. Lee SH, Dahali R, Nik Hashim NH, et al (2023) Eucalyptus plantation worldwide, its hybridization and cloning development. Eucalyptus Eng Wood Prod Other Appl 1–15. https://doi.org/10.1007/978-981-99-7919-6_1/TABLES/2
  19. Lima JL, de Souza JC, Ramalho MAP, et al (2011) Early selection of parents and trees in Eucalyptus full-sib progeny tests. Crop Breed Appl Biotechnol 11:10–16. https://doi.org/10.1590/S1984-70332011000100002
  20. Lloyd DG (1987) Selection of Offspring Size at Independence and Other Size-Versus-Number Strategies. https://doi.org/101086/284676129:800–817. https://doi.org/10.1086/284676
  21. Luikart G, Cornuet JM (1999) Estimating the Effective Number of Breeders From Heterozygote Excess in Progeny. Genetics 151:1211–1216. https://doi.org/10.1093/GENETICS/151.3.1211
  22. Lush JL (1935) Progeny Test and Individual Performance as Indicators of an Animal’s Breeding Value. J Dairy Sci 18:1–19. https://doi.org/10.3168/JDS.S0022-0302(35)93109-5
  23. Nogueira TAPC, Nunes ACP, Dos Santos GA, et al (2019) Estimativa de parâmetros genéticos em progênies de irmãos completos de eucalipto e otimização de seleção. Sci For Sci 47:451–462. https://doi.org/10.18671/SCIFOR.V47N123.07
  24. Perek M, Hodge G, Tambarussi EV, et al (2022) Predicted genetic gains for growth traits and wood resistance in Pinus maximinoi and Pinus tecunumanii. Crop Breed Appl Biotechnol 22:2022. https://doi.org/10.1590/1984-70332022V22N2A23
  25. Piepho HP, Möhring J, Melchinger AE, Büchse A (2008) BLUP for phenotypic selection in plant breeding and variety testing. Euphytica 161:209–228. https://doi.org/10.1007/S10681-007-9449-8/FIGURES/4
  26. R Core Team D (2019) R: A Language and Environment for Statistical Computing Ramalho MAP, Santos HG, Souza T da S (2022) Eucalyptus breeding programs: a proposal for the use of inbred progênies. CERNE 28:e103049. https://doi.org/10.1590/01047760202228013049
  27. Rezende GDSP, Lima JL, Dias D da C, et al (2019) Clonal composites: An alternative to improve the sustainability of production in eucalypt forests. For Ecol Manage 449:117445. https://doi.org/10.1016/J.FORECO.2019.06.042
  28. Rezende GSDP, Deon de Resende M V, de Assis G D S P Rezende TF, et al (2014) Eucalyptus Breeding for Clonal Forestry. 393–424. https://doi.org/10.1007/978-94-007-7076-8_16
  29. Ruotsalainen S (2014) Increased forest production through forest tree breeding. Scand J For Res 29:333–344. https://doi.org/10.1080/02827581.2014.926100
  30. Santos AP dos, Nunes ACP, Corrêa RX, et al (2024a) Genetic diversity and selection gains in progeny tests of tropical forest species: a two-way road for the future. New For 55:997–1020. https://doi.org/10.1007/S11056-023-10015-9/FIGURES/3
  31. Santos HG, Lima JL de, Marçal T de S, et al (2024b) Would it be possible to reduce the number of repetitions in the evaluation of clones in a single tree plot? Euphytica 220:1–9. https://doi.org/10.1007/S10681-024-03294-6/FIGURES/1
  32. Shelbourne CJA (2019) Experiment Design in Provenance and Progeny Trials. Tree Breed Genet New Zeal 53–54. https://doi.org/10.1007/978-3-030-18460-5_7
  33. Silva PHM da, Rocha GN da, Araujo M, et al (2024) Thinning Strategies to Optimize Genetic Gain and Population Size in Eucalyptus pellita Breeding. Tree Genet Genomes 2024 206 20:1–7. https://doi.org/10.1007/S11295-024-01674-6
  34. Skrøppa T, Solvin TM, Steffenrem A (2023) Diallel crosses in Picea abies III. Variation and inheritance patterns in nursery trials. Silvae Genet 72:49–57. https://doi.org/10.2478/SG-2023-0005
  35. Souza EFM De, Peternelli LA, Pereira Barbosa MH (2006) Designs and model effects definitions in the initial stage of a plant breeding program. Pesqui Agropecuária Bras 41:369–375. https://doi.org/10.1590/S0100-204X2006000300001
  36. Stanger TK, Galloway GM, Retief ECL (2011) Final results from a trial to test the effect of plot size on Eucalyptus hybrid clonal ranking in coastal Zululand, South Africa. South For a J For Sci 73:131–135. https://doi.org/10.2989/20702620.2011.639492
  37. Tambarussi E V., Silva EDB, da Costa RML, et al (2023) Growth and survival of Eucalyptus viminalis in a frost-prone site in southern Brazil, and implications for genetic management. New Zeal J For Sci 53:. https://doi.org/10.33494/NZJFS532023X236X
  38. Utz HF, Melchinger AE, Schön CC (2000) Bias and Sampling Error of the Estimated Proportion of Genotypic Variance Explained by Quantitative Trait Loci Determined From Experimental Data in Maize Using Cross Validation and Validation With Independent Samples. Genetics 154:1839–1849. https://doi.org/10.1093/GENETICS/154.4.1839
  39. Varghese M, Harwood CE, Hegde R, Ravi N (2008) Evaluation of provenances of Eucalyptus camaldulensis and clones of E. camaldulensis and E. tereticornis at contrasting sites in southern India. Silvae Genet 57:170–179. https://doi.org/10.1515/SG-2008-0026
  40. Vencovsky R, Crossa J (2003) Measurements of Representativeness Used in Genetic Resources Conservation and Plant Breeding. Crop Sci 43:1912–1921. https://doi.org/10.2135/CROPSCI2003.1912
  41. Walsh B, Lynch M (2018) Evolution and selection of quantitative traits
  42. Weng Q, He X, Li F, et al (2014) Hybridizing ability and heterosis between Eucalyptus urophylla and E. tereticornis for growth and wood density over two environments. Silvae Genet 63:15–24. https://doi.org/10.1515/sg-2014-0003
  43. Weng YH, Park YS, Krasowski MJ, et al (2008) Partitioning of genetic variance and selection efficiency for alternative vegetative deployment strategies for white spruce in Eastern Canada. Tree Genet Genomes 4:809–819. https://doi.org/10.1007/S11295-008-0154-0/TABLES/4
  44. White TL, Hodge GR (1989) Concepts of Progeny Test Analysis. 48–61. https://doi.org/10.1007/978-94-015-7833-2_3
  45. Wickham H (2016) ggplot2: Elegant Graphics for Data Analysis Witcombe JR, Virk DS (2001) Number of crosses and population size for participatory and classical plant breeding. Euphytica 122:451–462. https://doi.org/10.1023/A:1017524122821/METRICS
  46. Zhang H, Zhang Y, Zhang D, et al (2020) Progeny performance and selection of superior trees within families in Larix olgensis. Euphytica 216:1–10. https://doi.org/10.1007/S10681-020-02596-9/TABLES/6
  47. Ziegler AC da F, Tambarussi EV (2022) Classifying coefficients of genetic variation and heritability for Eucalyptus spp. Crop Breed Appl Biotechnol 22:e40372222. https://doi.org/10.1590/1984-70332022V22N2A12
DOI: https://doi.org/10.2478/sg-2025-0004 | Journal eISSN: 2509-8934 | Journal ISSN: 0037-5349
Language: English
Page range: 44 - 52
Published on: May 24, 2025
Published by: Johann Heinrich von Thünen Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Antonio Carlos Mota Porto, Jose Mateus W. Gonsalves, Márcio Nagaychi, Shinitiro Oda, Eduardo Jose de Mello, Rodrigo Neves Graça, published by Johann Heinrich von Thünen Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.