Have a personal or library account? Click to login
DNA methylation analysis in plant gigagenomes: comparing two bisulfite sequencing techniques in Abies alba trees affected by dieback Cover

DNA methylation analysis in plant gigagenomes: comparing two bisulfite sequencing techniques in Abies alba trees affected by dieback

Open Access
|Mar 2025

References

  1. Ahuja MR, Neale DB (2005) Evolution of Genome Size in Conifers. Silvae Genetica 54(3):126–137. https://doi.org/10.1515/sg-2005-0020
  2. Alakärppä E, Salo HM, Valledor L, et al (2018) Natural variation of DNA methylation and gene expression may determine local adaptations of Scots pine populations. Journal of Experimental Botany 69(21):5293–5305. https://doi.org/10.1093/jxb/ery292
  3. Altschul SF, Gish W, Miller W, et al (1990) Basic local alignment search tool. Journal of Molecular Biology 215(3):403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
  4. Ashikawa I (2001) Gene-associated CpG islands in plants as revealed by analyses of genomic sequences. The Plant Journal 26(6):617–25. https://doi.org/10.1046/j.1365-313x.2001.01062.x
  5. Ausin I, Feng S, Yu C, et al (2016) DNA methylome of the 20-gigabase Norway spruce genome. Proceedings of the National Academy of Science of the USA 113(50):E8106–E8113. https://doi.org/10.1073/pnas.1618019113
  6. Bartels A, Han Q, Nair P, et al (2018) Dynamic DNA Methylation in Plant Growth and Development. International Journal of Molecular Sciences 19(7):2144. https://doi.org/10.3390/ijms19072144
  7. Beck D, Ben Maamar M, Skinner MK (2022) Genome-wide CpG density and DNA methylation analysis method (MeDIP, RRBS, and WGBS) comparisons. Epigenetics 17(5):518–530. https://doi.org/10.1080/15592294.2021.1924970
  8. Boulias K, Greer EL (2021) Detection of DNA Methylation in Genomic DNA by UHPLC-MS/MS. Methods in Molecular Biology 2198:79–90. https://doi.org/10.1007/978-1-0716-0876-0_7
  9. Dar FA, Mushtaq NU, Saleem S, et al (2022) Role of Epigenetics in Modulating Phenotypic Plasticity against Abiotic Stresses in Plants. International Journal of Genomics 2022:1092894. https://doi.org/10.1155/2022/1092894
  10. Dobbertin M (2005) Tree growth as indicator of tree vitality and of tree reaction to environmental stress: A review. European Journal of Forest Research 124:319–333. https://doi.org/10.1007/s10342-005-0085-3
  11. García-García I, Méndez-Cea B, Gallego FJ, et al (2024) Genomic insights into climate change-induced forest dieback in Abies alba hotspots of decline. European Journal of Forest Research. https://doi.org/10.1007/s10342-024-01737-2
  12. García-García I, Méndez-Cea B, González de Andrés E, et al (2023) Climate and Soil Microsite Conditions Determine Local Adaptation in Declining Silver Fir Forests. Plants 12(14):2607. https://doi.org/10.3390/plants12142607
  13. García-García I, Méndez-Cea B, Martín-Gálvez D, et al (2022) Challenges and Perspectives in the Epigenetics of Climate Change-Induced Forests Decline. Frontiers in Plant Science 12:797958. https://doi.org/10.3389/fpls.2021.797958
  14. González de Andrés E, Gazol A, Querejeta JI, et al (2022) The role of nutritional impairment in carbon-water balance of silver fir drought-induced dieback. Global Change Biology 28(14):4439–4458. https://doi.org/10.1111/gcb.16170
  15. Huang XY, Chao DY, Koprivova A, et al (2016) Nuclear Localised MORE SULPHUR ACCUMULATION1 Epigenetically Regulates Sulphur Homeostasis in Arabidopsis thaliana. PLoS Genetics 12(9):e1006298. https://doi.org/10.1371/journal.pgen.1006298
  16. Kenchanmane Raju SK, Ritter EJ, Niederhuth CE (2019) Establishment, maintenance, and biological roles of non-CG methylation in plants. Essays in Biochemistry 63(6):743–755. https://doi.org/10.1042/EBC20190032
  17. Krueger F, Andrews SR (2011) Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 27(11):1571–2. https://doi.org/10.1093/bioinformatics/btr167
  18. Kumar S, Mohapatra T (2021) Dynamics of DNA Methylation and Its Functions in Plant Growth and Development. Frontiers in Plant Science 12:596236. https://doi.org/10.3389/fpls.2021.596236
  19. Kurdyukov S, Bullock M (2016) DNA Methylation Analysis: Choosing the Right Method. Biology 5(1):3. https://doi.org/10.3390/biology5010003
  20. Li J, Han F, Yuan T, et al (2023) The methylation landscape of giga-genome and the epigenetic timer of age in Chinese pine. Nature Communications 14(1):1947. https://doi.org/10.1038/s41467-023-37684-6
  21. Linares JC, Camarero JJ (2012) Silver Fir Defoliation Likelihood Is Related to Negative Growth Trends and High Warming Sensitivity at Their Southernmost Distribution Limit. ISRN Forestry 2012:437690. https://doi.org/10.5402/2012/437690
  22. Martin GT, Seymour DK, Gaut BS (2021) CHH Methylation Islands: A Nonconserved Feature of Grass Genomes That Is Positively Associated with Transposable Elements but Negatively Associated with Gene-Body Methylation. Genome Biology and Evolution 13(8):evab144. https://doi.org/10.1093/gbe/evab144
  23. Mosca E, Cruz F, Gómez-Garrido J, et al (2019) A Reference Genome Sequence for the European Silver Fir (Abies alba Mill.): A Community-Generated Genomic Resource. Genes Genome Genetics (G3) 9(7):2039–2049. https://doi.org/10.1534/g3.119.400083
  24. Nicotra AB, Atkin OK, Bonser SP, et al (2010) Plant phenotypic plasticity in a changing climate. Trends in Plant Science 15(12):684–92. https://doi.org/10.1016/j.tplants.2010.09.008
  25. Niu S, Li J, Bo W, et al (2022) The Chinese pine genome and methylome unveil key features of conifer evolution. Cell 185(1):204–217.e14. https://doi.org/10.1016/j.cell.2021.12.006
  26. Pigliucci M, Murren CJ, Schlichting CD (2006) Phenotypic plasticity and evolution by genetic assimilation. Journal of Experimental Biology 209:2362–7. https://doi.org/10.1242/jeb.02070
  27. Puizina J, Sviben T, Krajacić-Sokol I, et al (2008) Cytogenetic and molecular characterization of the Abies alba genome and its relationship with other members of the Pinaceae. Plant Biology 10(2):256–67. https://doi.org/10.1111/j.1438-8677.2007.00018.x
  28. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140. https://doi.org/10.1093/bioinformatics/btp616
  29. Sáez-Laguna E, Guevara MÁ, Díaz LM, et al (2014) Epigenetic variability in the genetically uniform forest tree species Pinus pinea L. PLoS One 9(8):e103145. https://doi.org/10.1371/journal.pone.0103145
  30. Stotz GC, Salgado-Luarte C, Escobedo VM, et al (2021) Global trends in phenotypic plasticity of plants. Ecology Letters 24(10):2267–2281. https://doi.org/10.1111/ele.13827
  31. Suzuki M, Liao W, Wos F, et al (2018) Whole-genome bisulfite sequencing with improved accuracy and cost. Genome Research 28(9):1364–1371. https://doi.org/10.1101/gr.232587.117
  32. Takuno S, Ran JH, Gaut B (2016) Evolutionary patterns of genic DNA methylation vary across land plants. Nature Plants 2:15222. https://doi.org/10.1038/nplants.2015.222
  33. Vu GTH, Cao HX, Hofmann M, et al (2023) Uncovering epigenetic and transcriptional regulation of growth in Douglas-fir: identification of differential methylation regions in mega-sized introns. Plant Biotechnology Journal 22(4):863–875. https://doi.org/10.1111/pbi.14229
  34. Zhang H, Lang Z, Zhu JK (2018) Dynamics and function of DNA methylation in plants. Nature Reviews Molecular Cell Biology 19(8):489–506. https://doi.org/10.1038/s41580-018-0016-z
  35. Zuo J, Wang Y, Zhu B, et al (2018) Comparative Analysis of DNA Methylation Reveals Specific Regulations on Ethylene Pathway in Tomato Fruit. Genes 9(5):266. https://doi.org/10.3390/genes9050266
DOI: https://doi.org/10.2478/sg-2024-0020 | Journal eISSN: 2509-8934 | Journal ISSN: 0037-5349
Language: English
Page range: 201 - 205
Published on: Mar 1, 2025
Published by: Johann Heinrich von Thünen Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Isabel García-García, Belén Méndez-Cea, Jose Luis Horreo, Juan Carlos Linares, Francisco Javier Gallego, published by Johann Heinrich von Thünen Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.