Have a personal or library account? Click to login
Phenotypic variability of tracheids in hybrid Larch breeding populations Cover

Phenotypic variability of tracheids in hybrid Larch breeding populations

Open Access
|Nov 2024

References

  1. Abe H, Nakai T (1999) Effect of water status within a tree on tracheid morphogenesis in Cryptomeria japonica D. Don, Trees 14, 124-129. https://link.springer.com/article/10.1007/PL00009758
  2. Antonova GF, Stasova VV (1997) Effects of Environmental Factors on Wood Formation in Larch (Larix sibirica Ldb.) stems. Trees, 11 (8), 462–468. https://link.springer.com/article/10.1134/S1062360408040024
  3. Bisset IJW, Dadswell HE, Wardrop AB (1951) Factors influencing tracheid length in conifer stems. Australian Forestry, 15(1), 17-30. https://doi.org/10.1080/00049158.1951.10675795
  4. Boruszewski P, Jankowska A, Kurowska A (2017) Comparison of the Structure of Juvenile and Mature Wood of Larix decidua Mill. from Fast-Growing Plantations in Poland. BioResources, 12 (1), 1813–1825. https://bioresources.cnr.ncsu.edu/wp-content/uploads/2017/01/
  5. BioRes_12_2_1813_Boruszewski_JK_Compar_Struct_Juvenile_Wood_Fast_Growing_Lar-ix_Plantation_10397.pdf
  6. Chalk, L (1930) Tracheid Length, with Special Reference to Sitka Spruce (Picea sitchensis Carr.). Forestry, An International Journal of Forest Research, 4 (1), 7–14. https://doi.org/10.1093/oxfordjournals.forestry.a063185
  7. Cown DJ (1992) Corewood (Juvenile Wood) in Pinus radiata – Should we be Concerned? New Zealand Journal of Forestry Science, 22 (1), 87–95. https://nzjf.org.nz/free_issues/NZJF59_4_2015/E68435A4-7F3D-461a-9DF0-EE5D202B89CF.pdf
  8. Fabisiak E, Molinski W (2002) Variability of the Wood Basic Density and Length of Tracheids in 45-Year Larch-Fir Stand (Larix decidua Mill.). In: Kudela J, Kurjatko S (edit.): Wood Structure and Properties. Arbora Publishers, Zvolen, Slovakia, 25–28. ISBN 80-967088-9-9
  9. Fabisiak E, Mania P, Kudela J (2014) Variation in Tracheid Lengths in Resonance Wood of Spruce (Picea abies L.). Annals of Warsaw University of Life Sciences - SGGW. Forestry and Wood Technology, 86, 104–108. https://wulsannals.com/resources/html/article/details?id=107758&language=en
  10. Fabisiak E, Fabisiak B, Krauss A (2020) Radial Variation in Tracheid Lengths in Dominant Trees of Selected Coniferous Species. BioResources, 15 (4), 7330–7341. https://bioresources.cnr.ncsu.edu/resources/radial-variation-in-tracheid-lengths-in-dominant-trees-of-selected-coniferous-species/
  11. Fabisiak E, Fabisiak B (2021) Relationship of Tracheid Length, Annual Ring Width, and Wood Density in Scots Pine (Pinus sylvestris L.) Trees from Different Social Classes of Tree Position in the Stand. BioResources, 16 (4), 7492–7508. https://bioresources.cnr.ncsu.edu/resources/relationship-of-tracheidlength-annual-ring-width-and-wood-density-in-scots-pine-pinus-sylvestrisl-trees-from-different-social-classes-of-tree-position-in-the-stand/
  12. Falk W, Bachmann-Gigl U, Kölling C (2012) Die Europäische Lärche im Klimawandel. In: Bayerische Landesanstalt für Wald und Forstwirtschaft (LWF) (edit.): Beiträge zur Europäischen Lärche. LWF Wissen, 69, 19–27. https://lwf.bayern.de/mam/cms04/boden-klima/dateien/die_europaeische_laerche_im_klimawandel_w69.pdf
  13. Fujiwara S, Yang KC (2000) The Relationship Between Cell Length and Ring Width and Circumferential Growth Rate in Five Canadian Species. IAWA Journal, 21 (3), 335–345. https://agris.fao.org/agris-search/search.do?recordID=US201900439191
  14. Georgii H-O (2009) Stochastik: Einführung in die Wahrscheinlichkeitstheorie und Statistik, (4th edition), Walter de Gruyter, Berlin, 404 p., e-ISBN (PDF) 978-3-11-35970-1
  15. Gonzalez-Benecke CA, Martin TA, Peter GF (2010) Hydraulic Architecture and Tracheid Allometry in Mature Pinus palustris and Pinus elliottii Trees. Tree Physiology, 30 (3), 361–375. https://academic.oup.com/treephys/article/30/3/361/1711198
  16. Gricar J, Prislan P, De Luis M, Gryc V, Hacurova J, Vavrčik H, Čufar K (2015) Plasticity in variation of xylem and phloem cell characteristics of norway spruce under different local conditions. Frontiers in Plant Science, 6, 1–14. https://www.frontiersin.org/articles/10.3389/fpls.2015.00730/full
  17. Gryc V, Vavrčík H, Horn K (2011) Density of Juvenile and Mature Wood of Selected Coniferous Species. Journal of Forest Science, 57 (3), 123–130. https://jfs.agriculturejournals.cz/artkey/jfs-201103-0005_density-of-juvenile-and-mature-wood-of-selected-coniferous-species.php
  18. Henry A, Flood MG (1919) The History of the Dunkeld Hybrid Larch, Larix eurolepis, with Notes on Other Hybrid Conifers. Proceedings of the Royal Irish Academy. Section B: Biological, Geological, and Chemical Science, 35, 55–66. https://www.jstor.org/stable/20517054
  19. Hering S (1994) Analysen Zur Quantitativen Genetik Von Lärchenkreuzungsnachkommenschaften. Forstwissenschaftliches Centralblatt vereinigt mit Tharandter forstliches Jahrbuch, 113 (1), 261–276. https://doi.org/10.1007/BF02936703
  20. Herman M, Dutilleul P, Avella-Shaw T (1998) Intra-Ring and Inter-Ring Variations of Tracheid Length in Fast-Grown Versus Slow-Grown Norway Spruces (Picea abies). IAWA Journal, 19 (1), 3–23. https://wfs.swst.org/index.php/wfs/article/view/967
  21. Keith CT, Chauret G (1988) Basic wood properties of European larch from fastgrowth plantations in eastern Canada. Canadian Journal of Forest Research, 18, 1325-1336. https://larchresearch.com/wp-content/uploads/2015/11/Basic-wood-properties-of-European-larch-from-fast-growth-plantations-in-eastern-Canada.pdf
  22. Langner W, Schneck V (1998) Ein Beitrag zur Züchtung von Hybridlärchen (Larix x eurolepis Henry): Das Langzeitprogramm der Firma F. von Lochow-Petkus. Sauerländer, Frankfurt am Main, 159 p.
  23. Liang SC (1948) Variation in Tracheid Length from the Pith Outwards in the Wood of the Genus Larix. Forestry: An International Journal of Forest Research, 22 (2), 222–237. https://doi.org/10.1093/oxfordjournals.forestry.a062960
  24. Mäkinen H, Jyske T, Saranpää P (2008) Variation of Tracheid Length Within Annual Rings of Scots Pine and Norway Spruce. Holzforschung, 62, 123–128. https://www.degruyter.com/document/doi/10.1515/HF.2008.018/html
  25. Marchal A, Schlichting CD, Gobin R, Balandier P, Millier F, Muñoz F, Pâques LE, Sánchez L (2019) Deciphering Hybrid Larch Reaction Norms Using Random Regression. G3 Genes Genomes Genetics, 9 (1), 21–32. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6325918/
  26. Mencuccini M, Grace J, Fioravanti M (1997) Biomechanical and Hydraulic Determinants of Tree Structure in Scots pine: Anatomical Characteristics. Tree Physiology, 17 (2), 105–113. https://pubmed.ncbi.nlm.nih.gov/14759880/
  27. Moore JR, Cown DJ (2017) Corewood (Juvenile Wood) and Its Impact on Wood Utilisation. Current Forestry Reports, 3 (2), 107–118. https://www.infona.pl/resource/bwmeta1.element.springer-doi-10_1007-S40725-017-0055-2
  28. Pâques LE (2013) Forest Tree Breeding in Europe: Current State-of-the-Art and Perspectives. Springer, Dordrecht, 527 p. https://www.openagrar.de/receive/timport_mods_00013081
  29. R Core Team (2021). R: A language and environment for statistical Computing, v 4.1.1. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
  30. Rieckmann C, Schneck V, Liesebach M (2020) Ein Vergleich von Absaaten europäischer Hybridlärchen-Samenplantagen. In: Liesebach, M. (edit.). Forstpflanzenzüchtung für die Praxis, 6. Tagung der Sektion Forstgenetik/Forstpflanzenzüchtung vom 16.-18.th Sept. 2019 in Dresden. Thünen Report 76, 100–118. https://www.thuenen.de/media/publikationen/thuenen-report/Thuenen_Report_76.pdf
  31. Sasani N, Pâques LE, Boulanger G, Singh AP, Gierlinger N, Rosner S, Brendel O (2021) Physiological and anatomical responses to drought Stress differ between two larch species and their hybrid. Trees, 35 (5), 1467–1484. https://link.springer.com/article/10.1007/s00468-021-02129-4
  32. Schütt P (1992) Lexikon der Forstbotanik: Morphologie, Pathologie, Ökologie and Systematik wichtiger Baum- und Straucharten. (1. ed.). Ecomed, Landsberg/Lech, 581 p. https://doi.org/10.1002/biuz.19930230313
  33. Sellin A (1991) Hydraulic Conductivity of Xylem Depending on Water Saturation Level in Norway Spruce (Picea abies (L.) Karst.). Journal of Plant Physiology, 138 (4), 466–469. https://www.sciencedirect.com/science/article/abs/pii/S0176161711805249
  34. Sperry JS, Hacke UG, Pittermann J (2006) Size and Function in Conifer Tracheids and Angiosperm Vessels. American Journal of Botany, 93 (10), 1490–1500. https://bsapubs.onlinelibrary.wiley.com/doi/full/10.3732/ajb.93.10.1490
  35. Wagenführ R, Scheiber C (1989) Holzatlas. (3. ed.). Fachbuchverlag, Leipzig, 720 p.
  36. Weiser F (1992) Tree Improvement of Larch at Waldsieversdorf: Status and Prospects. Forestry Research Institute Eberswalde, 41 (3), 181–188. https://www.thuenen.de/media/institute/fg/PDF/Silvae_Genetica/1992/Vol._41_Heft_3/41_3_181.pdf
  37. Weiß B (2020) Eigenschaftsprofil und Einsatzspektrum von Schnellwachsenden Züchtungsprodukten (Hybridlärche) in der Holzverarbeitenden Industrie. Institut für Holztechnologie Dresden gemeinnützige GmbH, Jahresbericht 2020, 56–59. https://www.ihd-dresden.de/fileadmin/user_upload/pdf/IHD/wissensportal/taetigkeitsbericht/deutsch/Berichte/Jahresbericht_2020.pdf
  38. Wolf H, Weiß B, Bues CT, Bremer M, Krabel D (2021) Report: Eigenschaftsprofil und Einsatzspektrum von schnellwachsenden Züchtungsprodukten am Beispiel der Hybridlärche in der holzverarbeitenden Industrie. Nr. FKZ: 22035014. 72 p.
  39. Wricke G (1972) Populationsgenetik. Walter de Gruyter, Berlin ; New York, 172 p. Yoshizawa N, Kiyomiya M, Idei T (1987) Variations in Tracheid Length and Morphological Changes in Tracheid Tips Associated with the Development of Compression Wood. Wood Science and Technology, 21 (1), 1–10. https://doi.org/10.1007/BF00349713
  40. Zhu J, Nakano T, Hirakawa Y (2000) Effects of Radial Growth Rate on Selected Indices for Juvenile and Mature Wood of the Japanese Larch. Journal of Wood Science, 46 (6), 417–422. https://jwoodscience.springeropen.com/articles/10.1007/BF00765798
  41. Zwieniecki MA, Secchi F (2015) Threats to Xylem Hydraulic Function of Trees under ‘New Climate Normal’ Conditions. Plant, Cell & Environment, 38 (9), 1713–1724. https://onlinelibrary.wiley.com/doi/10.1111/pce.12412
DOI: https://doi.org/10.2478/sg-2024-0016 | Journal eISSN: 2509-8934 | Journal ISSN: 0037-5349
Language: English
Page range: 160 - 170
Published on: Nov 21, 2024
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Doris Krabel, Florian Rau, Alexander Solger, published by Johann Heinrich von Thünen Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.