Have a personal or library account? Click to login
Genetic parameters and correlations in growth and wood density traits of Balfourodendron riedelianum based on provenance and progeny testing Cover

Genetic parameters and correlations in growth and wood density traits of Balfourodendron riedelianum based on provenance and progeny testing

Open Access
|Jun 2024

References

  1. ABNT – Associação Brasileira de Normas Técnicas (2003) Determinação da densidade básica em madeira. NBR 11941-02, Rio de Janeiro.
  2. Albinio JC, Tomazello Filho M (1985) Variação da densidade básica da madeira e produtividade de Eucalyptus spp. Planaltina EMBRAPA CEPAC. Boletim de Pesquisa 26.
  3. Aguiar BI, Freitas MLM, Tavares YR, Tambarussi EV, Zanato B, Gandara FB, Paludeto JGZ, Silva DYBO, Silva JR, Moraes MLT, Longui EL, Zanatto ACS, Sebbenn AM (2019) Genetic controlo f silvicultural traits in Balfourodendron riedelianum (ENGL.) ENGL. Silvae Genetica 68:73–78. https://doi.org/10.2478/sg-2019-0013
  4. Bouffier L, Raffin A, Rozenberg P, Meredieu C, Kremer A (2009) What are the consequences of growth selection on wood density in the French maritime pine breeding programme? Tree Genetics & Genomes 5:11–25. https://doi.org/10.1007/s11295-008-0165-x
  5. Carvalho PER (2003) Espécies arbóreas brasileiras. Brasília, DF: Embrapa Informações Tecnológica; Colombo: Embrapa Floresta.
  6. Durigan G, Figliolia MB, Kawabata M, Garrido MAO, Baitello JB (2002) Sementes e mudas de árvores tropicais. São Paulo: Páginas & Letras.
  7. Farias JAC, Oliveira OS, Franco ETH (1995) Crescimento inicial do guatambu, Balfourodendron riedelianum (Eagl.), em diferentes intensidades luminosas. Ciência Florestal 5:69–86. http://dx.doi.org/10.5902/19805098311
  8. Fukatsu E, Hiraoka Y, Matsunaga K, Nakada R (2015) Genetic relationship between wood properties and growth traits in Larix kaempferi obtained from a diallel mating test. Journal of Wood Science 61:10–18. https://doi.org/10.1007/s10086-014-1436-9
  9. Gerendiain ZA, Peltola H, Pulkkinen P (2009) Growth and wood property traits in narrow crowned Norway spruce (Picea abies f. pendula) clones grown in southern Finland. Silva Fennica 43:369–382. https://doi.org/10.14214/sf.194
  10. Hong Z, Fries A, Wu HX (2014) High negative genetic correlations between growth traits and wood properties suggest incorporating multiple traits selection including economic weights for the future Scots pine breeding programs. Annals of Forest Science 71:463–472. https://doi.org/10.1007/s13595-014-0359-3
  11. Huang W, Carbone MA, Lyman RF, Anholt RRH, Mackay TFC (2020) Genotype by environment interaction for gene expression in Drosophila melanogaster. Nature Communication 11:5451. https://doi.org/10.1038/s41467-020-19131-y
  12. Hung TD, Brawner JT, Meder R, Lee DJ, Southerton S, Thinh HH, Dieters MJ (2015) Estimates of genetic parameters for growth and wood properties in Eucalyptus pellita F. Muell. to support tree breeding in Vietnam. Annals of Forest Science 72:205–217. https://doi.org/10.1007/s13595-014-0426-9
  13. Kien ND, Jansson G, Harwood C, Almqvist C (2010) Clonal variation and geno-type by environment interactions in growth and wood density in Eucalyptus camaldulensis at three contrasting sites in Vietnam. Silvae Genetica 59:17–28. https://doi.org/10.1515/sg-2010-0003
  14. Kubota TY, Moraes MA de, Silva ECB, Pupin S, Aguiar AV, Moraes MLT de, Freitas MLM, Sato AS, Machado JAR, Sebbenn AM (2015) Variabilidade genética para caracteres silviculturais em progênies de polinização aberta de Balfourodendron riedelianum (Engler). Scientia Forestalis 43:407–415.
  15. Land SB, Dicke SG, Tuskan GA (1983) Genetic, site and within-tree variation in specific gravity and moisture of young sycamore trees. Tappi Journal 66:149–153.
  16. Li L, Wu HX (2005) Efficiency of early selection for rotation-aged growth and wood density traits in Pinus radiata. Canadian Journal of Forest Research 35:2019–2029. https://doi.org/10.1139/x05-134
  17. Lima IL, Mastelin SM, Longui EL, Freitas MLM, Romero D, Zanatto ACS, Florsheim SMB (2011) Densidade básica da madeira e dimensões celulares da madeira de Balfourodendron riedelianum em função da procedência e posição radial. Revista do Instituto Florestal 23:217–230. https://doi.org/10.24278/2178-5031.2011232296
  18. Masendra IN, Ishiguri F, Hidayati F, Nirsatmanto A, Sunarti SS, Kartikaningtyas D, Takashima Y, Takahashi Y, Ohshima J, Yokota S (2023) Variations of growth and wood traits in standing trees of the third-generation Acacia mangium families in Indonesia. Silvae Genetica 72:150–161. https://doi.org/10.2478/sg-2023-0016
  19. Montes SC, Hernandez RE, Beaulieu J, Weber JC (2006) Genetic variation and correlations between growth and wood density of Calycophyllum sprucea-num at an early age in the Peruvian Amazon. Silvae Genetica 55:217–228. http://dx.doi.org/10.1515/sg-2006-0029
  20. Moura PG, Parca MLS, Solva MAS (1991) Variação da densidade básica da madeira de espécies e procedências de Pinus centro-americanos em três locais na região dos cerrados. Boletim de Pesquisa Florestal 22/23:29–44.
  21. Nabais C, Hansen JK, David-Schwartz R, Klisz M, López R, Rozenberg, P (2018) The effect of climate on wood density: What provenance trials tell us? Forest Ecology and Management 408:148–156. https://doi.org/10.1016/j.foreco.2017.10.040
  22. Pliura A, Yu Q, Zhang SY, Mackay J, Périnet P, Bousquet J (2005) Variation in wood density and shrinkage and their relationship to growth of selected young poplar hybrid crosses. Forest Science 51:472–482. https://doi.org/10.1093/forestscience/51.5.472
  23. Pliura A, Zhang SY, MacKay J, Bousquet J (2007) Genotypic variation in wood density and growth traits of poplar hybrids at four clonal trials. Forest Ecology and Management 238:92–106. https://doi.org/10.1016/j.foreco.2006.09.082
  24. Poupon V, Gezan SA, Schueler S, Lstiburek M (2023) Genotype x environment interaction and climate sensitivity in growth and wood density of European larch. Forest Ecology and Management 542:121259. https://doi.org/10.1016/j.foreco.2023.121259
  25. Resende MDV (2016) Software Selegen–REML/BLUP: a useful tool for plant breeding. Crop Breeding and Applied Biotechnology 16:330–339. http://dx.doi.org/10.1590/1984-70332016v16n4a49
  26. Riva LC, Moraes MA, Cambuim J, Zulian DF, Sato LM, Caldeira FA, Panosso AR, Moraes MLT (2020) Genetic control of wood quality of Myracrodruon urundeuva populations under anthropogenic disturbance. Crop Breeding and Applied Biotechnology 20:e320920411. http://dx.doi.org/10.1590/1984-70332020v20n4a64
  27. Santos FW, Moraes MLT, Florshein SMB, Lima IL, Silva JM, Freitas MLM, Sebbenn AM (2010) Variação genética para caracteres anatômicos e retração volumétrica e sua correlação com a densidade básica da madeira em uma população base de Eucalyptus camaldulensis Dehn. Scientia Forestalis 38:159–170.
  28. Schaberg PG, Murakami PF, Collins KM, Hansen CF, Hawley GJ (2022) Phenology, cold injury and growth of American chestnut in a range-wide provenance test. Forest Ecology and Management 513:120178. https://doi.org/10.1016/j.foreco.2022.120178
  29. SAS (1999) Institute INC. SAS procedures guide. Version 8 (TSMO). Cary. Sebbenn AM, Kageyama PY, Zanatto ACS (2002) Estimativas de ganhos na seleção em populações Cariniana legalis (Mart.) O. Ktze. Incorporando informações do sistema de reprodução. Revista do Instituto Florestal 14:65–77. https://doi.org/10.24278/2178-5031.2002141401
  30. Sebbenn AM, Siqueira ACFN, Vencovski R, Machado JAR (1999) Interação genótipo x ambiente na conservação ex situ de Peltophorum dubium (Spreng) Taub. em duas regiões do Estado de São Paulo. Revista do Instituto Florestal 11:65–78. https://doi.org/10.24278/2178-5031.1999111517
  31. Sebbenn AM, Freitas MLM, Zanatto ACS, Moraes E, Moraes MA (2007) Conservação ex situ e pomar de sementes em banco de germoplasma de Balfourodendron riedelianum. Revista Instituto Florestal 19:101–112. https://doi.org/10.24278/2178-5031.2007192353
  32. Siqueira ACMF, Sebbenn AM, Ettori LC, Nogueira JCB (2000) Variação genética entre e dentro de populações de Balfourodendron riedelianum (Engler) Engler para conservação ex situ. Revista do Instituto Florestal 12:89–103. https://doi.org/10.24278/2178-5031.20001226
  33. SNIF (2024) Sistema Nacional de Informações Florestais-SNIF. Serviço Florestal Brasileiro. https://snif.florestal.gov.br/pt-br/especies-florestais
  34. Soro A, Lenz P, Hassegawa M, Roussel J-R, Bousquet J, Achim A (2022) Genetic influence on components of wood density variation in white spruce. Forestry: An International Journal of Forest Research 95:153–165. https://doi.org/10.1093/forestry/cpab044
  35. Tung ESC, Freitas MLM, Florshein SMB, Lima IL, Longui EL, Santos FW, Moraes MLT, Sebbenn AM (2010) Variação genética para caracteres silviculturais e anatômicos da madeira em progênies de Myracrodruon urundeuva (Engler) Fr. Allem. Scientia Forestalis 38:499–508.
  36. Tung ESC, Freitas MLM, Florshein SMB, Lima IL, Longui EL, Santos FW, Moraes MLT, Sebbenn AM (2011) Variação, divergência e correlações genéticas entre caracteres silviculturais e densidade básica da madeira em progênies de Myracrodruon urundeuva (Engler) Fr. Allem. Revista do Instituto Florestal 23:1–12. https://doi.org/10.24278/2178-5031.2011231281
  37. Vencovsky R, Barriga P (1992) Genética biométrica no fitomelhoramento. Revista Brasileira de Genética, Ribeirão Preto.
  38. Williams CG, Megraw RA (1994). Juvenile-mature relationships for wood density in Pinus taeda. Canadian Journal of Forest Research 24:714–722. http://dx.doi.org/10.1139/x94-095
  39. Wright JW (1978) A simplified design for combined provenance and progeny testing. Silvae Genetica 27:68–70.
  40. Zhang H, Zhang S, Chen S, Xia D, Yang C, Zhao X (2022) Genetic variation and superior provenances selection for wood properties of Larix olgensis at four trials. Journal of Forest Research 33:1867–1879. https://doi.org/10.1007/s11676-021-01449-y
DOI: https://doi.org/10.2478/sg-2024-0007 | Journal eISSN: 2509-8934 | Journal ISSN: 0037-5349
Language: English
Page range: 70 - 78
Published on: Jun 5, 2024
Published by: Johann Heinrich von Thünen Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Eduardo L. Longui, Israel L. de Lima, Letícia Paneque, José A. R. Machado, Miguel L.M. Freitas, Alexandre M. Sebbenn, published by Johann Heinrich von Thünen Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.