References
- Almeida P, Proux-Wera E, Churcher A, Soler L et al. (2019) Single-molecule genome assembly of the Basket Willow, Salix viminalis, reveals earliest stages of sex chromosome expansion. BMC Biology, 18(1), 1-18. https://doi.org/10.1101/589804.10.1101/589804
- Alves FC, Balmant KM, Resende MFR et al. (2020) Accelerating forest tree breeding by integrating genomic selection and greenhouse phenotyping. The Plant Genome,13(3). https://doi.org/10.1002/tpg2.20048.10.1002/tpg2.2004833217213
- Andersson-Gunnerås S, Mellerowicz E et al. (2006) Biosynthesis of cellulose-enriched tension wood in Populus global analysis of transcripts and metabolites identifies biochemical and developmental regulators in secondary wall biosynthesis. The Plant Journal, 45(2), 144-65. https://doi.org/10.1111/j.1365-313x.2005.02584.x10.1111/j.1365-313X.2005.02584.x16367961
- Badenes ML, Martí AF, Ríos G, Rubio-Cabetas MJ et al. (2016) Application of genomic technologies to the breeding of trees. Frontiers in Genetics, 7(198), 1–13. https://doi.org/10.3389/fgene.2016.00198.10.3389/fgene.2016.00198510902627895664
- da-Silva B, Adriano, Wanderley-Nogueira AC, Silva RRM et al. (2005) In silico survey of resistance (R) genes in Eucalyptus transcriptome. Genetics and Molecular Biology, 28(3), 562–574. https://doi.org/10.1590/S1415-47572005000400011.10.1590/S1415-47572005000400011
- Eugenia B, Carol-Ann VS, Lezar S (2009) A microarray-based method for the parallel analysis of genotypes and expression profiles of wood-forming tissues in Eucalyptus grandis. BMC Biotechnology, 9(1), 51. https://doi.org/10.1186/1472-6750-9-51.10.1186/1472-6750-9-51269888219473481
- Bhambhani S, Lakhwani D, Gupta P et al. (2017) Transcriptome and metabolite analyses in Azadirachta indica Identification of genes involved in biosynthesis of bioactive triterpenoids. Scientific Reports, 7(1), 1–12. https://doi.org/10.1038/s41598-017-05291-3.10.1038/s41598-017-05291-3550599128698613
- Triboulot B, Béatrice M, Brosché M, Renaut J et al. (2007) Gradual Soil Water Depletion Results in Reversible Changes of Gene Expression, Protein Profiles, Ecophysiology, and Growth Performance in Populus euphratica, a Poplar Growing in Arid Regions. Plant Physiology,143(2), 876–892. https://doi.org/10.1104/pp.106.088708.10.1104/pp.106.088708180372817158588
- Boyle B, Levée V, Hamel LP, Nicole MC et al. (2010) Molecular and histochemical characterisation of two distinct poplar Melampsora leaf rust pathosystems. Plant Biology, 12(2), 364–376. https://doi.org/10.1111/j.1438-8677.2009.00310.x.10.1111/j.1438-8677.2009.00310.x20398242
- Brosché M, Vinocur B, Alatalo ER, et al. (2005) Gene expression and metabolite profiling of Populus euphratica growing in the Negev desert. Genome Biology, 6(12), 1-17. https://doi.org/10.1186/gb-2005-6-12-r101.10.1186/gb-2005-6-12-r101141407216356264
- Cappa EP, El-Kassaby YA, Garcia MN et al. (2013) Impacts of population structure and analytical models in genome-wide association studies of complex traits in forest trees A case study in Eucalyptus globulus. PLoS ONE, 8(11). https://doi.org/10.1371/journal.pone.0081267.10.1371/journal.pone.0081267383993524282578
- Chen, Zhi-Qiang, Zan Y, Milesi P et al. (2021) Leveraging breeding programs and genomic data in Norway spruce (Picea abies L. Karst) for GWAS analysis. Genome biology, 22(1), 1–30. https://doi.org/10.1186/s13059-021-02421-z10.1186/s13059-021-02421-z828166534266449
- Chhetri HB, Furches A, Macaya-Sanz D, et al. (2020) 1Frontiers in Plant Science, 11, 1–20. https://doi.org/10.3389/fpls.2020.545748.10.3389/fpls.2020.545748750916833013968
- Chhetri, Hari B, Macaya-Sanz D, Kainer D et al. (2019) Multitrait genome-wide association analysis of Populus trichocarpa identifies key polymorphisms controlling morphological and physiological traits. New Phytologist, 223(1), 293–309. https://doi.org10.1111/NPH.1577710.1111/nph.1577730843213
- Constabel CP, Lindroth RL (2010) The Impact of Genomics on Advances in Herbivore Defense and Secondary Metabolism in Populus. Genetics and Genomics of Populus, 279–305. Springer. New York. https://doi.org/10.1007/978-1-4419-1541-2_13.10.1007/978-1-4419-1541-2_13
- Dai X, Hu Q, Cai Q et al. (2014) The willow genome and divergent evolution from poplar after the common genome duplication. Cell Research, 24(10), 1274–1277. https://doi.org/10.1038/cr.2014.83.10.1038/cr.2014.83418535224980958
- Dasgupta GM, Bari MPA, Shanmugavel S et al. (2021) Targeted re-sequencing and genome-wide association analysis for wood property traits in breeding population of Eucalyptus tereticornis× E. grandis. Genomics. Elsevier, 113(6), 4276–4292. https://doi.org/10.1016/j.ygeno.2021.11.01310.1016/j.ygeno.2021.11.01334785351
- Dillon SK, Brawner JT, Meder R et al. (2012) Association genetics in Corymbia citriodora subsp. variegata identifies single nucleotide polymorphisms affecting wood growth and cellulosic pulp yield. New Phytologist, 195(3), 596–608. https://doi.org/10.1111/j.1469-8137.2012.04200.x.10.1111/j.1469-8137.2012.04200.x22680066
- Diningrat DS, Widiyanto SM, Pancoro A, Iriawati et al. (2015) Transcriptome of Teak (Tectona grandis, L.f) in Vegetative to Generative Stages Development. Journal of Plant Sciences, 10(1), 1–14. https://doi.org/10.3923/jps.2015.1.14.10.3923/jps.2015.1.14
- Du Y, Song W, Yin Z et al. (2021) Genomic analysis based on chromosome-level genome assembly reveals an expansion of terpene biosynthesis of Azadirachta indica. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2021.11.11.46820710.1101/2021.11.11.468207
- Duplessis S, Pierre-Emmanuel C (2005) Transcript patterns associated with ectomycorrhiza development in Eucalyptus globulus and Pisolithus microcarpus. New Phytologist, 165(2), 599–611. https://doi.org/10.1111/j.1469-8137.2004.01248.x10.1111/j.1469-8137.2004.01248.x15720670
- El-Fattah AD, Sikora RA (2007) Induced resistance by the mutualistic endophyte, Fusarium oxysporum strain 162, toward Meloidogyne incognita on tomato. Biocontrol Science and Technology, 17(9), 969–975. https://doi.org/10.1080/09583150701582057.10.1080/09583150701582057
- Elshire RJ, Glaubitz JC, Qi Sun et al. (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PloS One 6(5). https://doi.org/10.1371/journal.pone.001937910.1371/journal.pone.0019379308780121573248
- Fan C, Qiu Z, Zeng B, Liu Y et al. (2017) Selection of reference genes for quantitative real-time PCR in Casuarina equisetifolia under salt stress. Biologia plan-tarum, 61(3), 463–472. https://doi.org/10.1007/s10535-016-0670-y10.1007/s10535-016-0670-y
- FAO Global Forest Resources Assessment (2020), Rome FAO. https://doi.org/10.4060/ca9825en.10.4060/ca9825en
- Foresta, de H, Somarriba E, Temu A (2013) Towards the Assessment of Trees Outside Forests. Resources Assessment. Rome.
- Frost CJ, Mescher MC, Dervinis C et al. (2008) Priming defense genes and metabolites in hybrid poplar by the green leaf volatile cis -3-hexenyl acetate. New Phytologist, 180(3), 722–734. https://doi.org/10.1111/j.1469-8137.2008.02599.x.10.1111/j.1469-8137.2008.02599.x18721163
- Galeano E, Vasconcelos TS, Oliveira PND et al. (2019) Physiological and molecular responses to drought stress in teak (Tectona grandis L.f.). PLoS ONE, 14(9), 1–26. https://doi.org10.1371/journal.pone.0221571.10.1371/journal.pone.0221571673347131498810
- Galeano E, Vasconcelos TS, Vidal M et al. (2015) Large-scale transcriptional profiling of lignified tissues in Tectona grandis. BMC Plant Biology, 15(1), 1–21. https://doi.org/10.1186/s12870-015-0599
- El-Dien OG, Ratcliffe B, Klápště J et al. (2015) Prediction accuracies for growth and wood attributes of interior spruce in space using genotyping-by-sequencing. BMC Genomics, 16(1), 370. https://doi.org/10.1186/s12864-015-1597-y.10.1186/s12864-015-1597-y442489625956247
- Goué N, Lesage-Descauses MC, Mellerowicz EJ et al. (2008) Microgenomic analysis reveals cell type-specific gene expression patterns between ray and fusi-form initials within the cambial meristem of Populus. New Phytologist, 180(1), 45–56. https://doi.org/10.1111/j.1469-8137.2008.02556.x.10.1111/j.1469-8137.2008.02556.x18631289
- Graça I, Mendes VM, Marques I et al. (2019) Comparative proteomic analysis of nodulated and non-nodulated Casuarina glauca Sieb. ex Spreng. grown under salinity conditions using sequential window acquisition of all theoretical mass spectra (SWATH-MS). International journal of molecular sciences, 21(1), 78. https://doi.org/10.3390/ijms2101007810.3390/ijms21010078698204931861944
- Grattapaglia and Dario (2014) Breeding forest trees by genomic selection: current progress and the way forward. Genomics of plant genetic resources. Springer, 651–682. https://doi.org/10.1007/978-94-007-7572-5_2610.1007/978-94-007-7572-5_26
- Grattapaglia, Dario (2017) Status and perspectives of genomic selection in forest tree breeding. Genomic selection for crop improvement Springer, 199–249. Springer. https://doi.org/10.1007/978-3-319-63170-7_910.1007/978-3-319-63170-7_9
- Grattapaglia, Dario, Silva-Junior OB, Resende RT et al. (2018) Quantitative genetics and genomics converge to accelerate forest tree breeding. Frontiers in Plant Science, 9, 1693. https://doi.org/10.3389/fpls.2018.0169310.3389/fpls.2018.01693626202830524463
- Grönlund A, Bhalerao RP, Karlsson J (2009) Modular gene expression in Poplar a multilayer network approach. New Phytologist, 181(2), 315–322. https://doi.org/10.1111/j.1469-8137.2008.02668.x.10.1111/j.1469-8137.2008.02668.x19121030
- Groover A, Quentin Cronk (2017) Comparative and evolutionary genomics of angiosperm trees. (Ed.) Andrew Groover & Quentin Cronk Springer, 21, https://doi.org/10.1007/978-3-319-49329-910.1007/978-3-319-49329-9
- Jungmin H, Shim S, Lee T, Kang YJ et al. (2019) Genome sequence of Jatropha curcas L., a non-edible biodiesel plant, provides a resource to improve seed-related traits. Plant Biotechnology Journal, 17(2), 517–530. https://doi.org/10.1111/pbi.12995.10.1111/pbi.12995633507230059608
- Hallingbäck HR, Berlin S, Nordh NE et al. (2019) Genome wide associations of growth, phenology, and plasticity traits in willow [Salix viminalis (L.)]. Frontiers in Plant Science, 10, P.753. https://doi.org/10.3389/fpls.2019.00753.10.3389/fpls.2019.00753658275431249579
- Hanley SJ, Karp A (2014) Genetic strategies for dissecting complex traits in bio-mass willows (Salix spp.). Tree Physiology, 34(11), 1167–1180. https://doi.org/10.1093/treephys/tpt089.10.1093/treephys/tpt08924218244
- Pan H, Zhong C, Zhang Y, Jiang Q (2016) Geographic variation in seedling morphology of Casuarina equisetifolia subsp. equisetifolia (Casuarinaceae). Australian Journal of Botany, 64(2), 160–170. https://doi.org/10.1071/BT1504910.1071/BT15049
- Correa J, Juan P, Prunier J, Vázquez-Lobo A et al. (2015) Molecular Signatures of Adaptation and Selection in Forest Trees. Advances in Botanical Research, 74, 265–306. https://doi.org/10.1016/bs.abr.2015.04.003.10.1016/bs.abr.2015.04.003
- Kainer, David, Padovan A, Degenhardt J et al. (2019) High marker density GWAS provides novel insights into the genomic architecture of terpene oil yield in Eucalyptus. New Phytologist, 223(3), 1489–1504. https://doi.org/10.1111/nph.15887.10.1111/nph.1588731066055
- Keller, Guylaine, Marchal T, SanClemente H (2009) Development and functional annotation of an 11,303-EST collection from Eucalyptus for studies of cold tolerance. Tree Genetics & Genomes, 5(2), 317–327. https://doi.org/10.1007/s11295-008-0184-7.10.1007/s11295-008-0184-7
- Khan, M Awais, Korban SS (2012) Association mapping in forest trees and fruit crops. Journal of Experimental Botany, 63(11), 4045–4060. https://doi.org/10.1093/jxb/ers10510.1093/jxb/ers10522511806
- King, James D, Roslyn M. Gleadow et al. (2006) Regulation of oil accumulation in single glands of Eucalyptus polybractea. New Phytologist, 172(3) 440–451. https://doi.org/10.1111/j.1469-8137.2006.01842.x.10.1111/j.1469-8137.2006.01842.x17083675
- Kress, WJ, Douglas ES, Paul JK, Jill LW, James HLM, Morgan RG, Xin L, Pamela SS (2022) “Green plant genomes: What we know in an era of rapidly expanding opportunities.” Proceedings of the National Academy of Sciences 119 (4).10.1073/pnas.2115640118879553535042803
- Kreuzwieser J, Hauberg J, Howell KA et al. (2009) Differential response of gray poplar leaves and roots underpins stress adaptation during hypoxia. Plant physiology, 149(1), 461–473. https://doi.org/10.1104/pp.108.12598910.1104/pp.108.125989261373219005089
- Neeraja KM, Jain P, Gupta S et al. (2016) An Improved Genome Assembly of Azadirachta indica A. Juss. G3: Genes, Genomes, Genetics, 6(7), 1835–1840. https://doi.org/10.1534/g3.116.03005610.1534/g3.116.030056493863827172223
- Neeraja KM, Pattnaik S, Jain P, Gaur P et al. (2012) A draft of the genome and four transcriptomes of a medicinal and pesticidal angiosperm Azadirachta indica. BMC genomics, 13(1), 1–13. https://doi.org/10.1186/1471-2164-13-46410.1186/1471-2164-13-464350778722958331
- Kumar R, Mehta S, Pathak SR (2018) Bioactive constituents of neem. Synthesis of medicinal agents from plants. Elsevier, 75–103. https://doi.org/10.1016/B978-0-08-102071-5.00004-010.1016/B978-0-08-102071-5.00004-0
- Kuravadi NA, Gowda M (2019), 53–57. Springer. https://doi.org/10.1007/978-3-030-16122-4_610.1007/978-3-030-16122-4_6
- Kuravadi NA, Yenagi V, Rangiah K, Mahesh HB et al. (2015) Comprehensive analyses of genomes, transcriptomes and metabolites of neem tree. PeerJ, 3. https://doi.org/10.7717/peerj.106610.7717/peerj.1066454002826290780
- Lafarguette F, Lepl JC, Dejardin A, Laurans F et al. (2004) Poplar Genes Encoding Fasciclin-Like Arabinogalactan Proteins Are Highly Expressed in Tension Wood. The New Phytologist, 164(1), 107–121. https://doi.org/10.1111/j.1469-8137.2004.01175.x10.1111/j.1469-8137.2004.01175.x33873473
- Lebedev VG, Lebedeva TN, Chernodubov AI, Shestibratov KA (2020) Genomic selection for forest tree improvement: Methods, achievements and perspectives. Forests, 11(11), 1–36. https://doi.org/10.3390/f11111190.10.3390/f11111190
- Li HB, Li N, Yang SZ, Peng HZ et al. (2017) Transcriptomic analysis of Casuarina equisetifolia L. in responses to cold stress. Tree Genetics & Genomes, 13(1), 1–15. https://doi.org/10.1007/s11295-016-1090-z.10.1007/s11295-016-1090-z
- Metzker ML (2010) Sequencing technologies—the next generation. Nature reviews genetics, 11(1), 31–46.10.1038/nrg262619997069
- Michael T P, Jackson S (2013) The First 50 Plant Genomes. The Plant Genome, Crop Science Society of America, 6(2), 1–7. https://doi.org/10.3835/plantgenome2013.03.0001in.10.3835/plantgenome2013.03.0001in
- Miranda M, Ralph SG, Mellway R, White R et al. (2007) The Transcriptional Response of Hybrid Poplar ( Populus trichocarpa x P. deltoids ) to Infection by Melampsora medusae Leaf Rust Involves Induction of Flavonoid Pathway Genes Leading to the Accumulation of Proanthocyanidins. Molecular Plant-Microbe Interactions, 20(7), 816–831. https://doi.org/10.1094/MPMI-20-7-0816.10.1094/MPMI-20-7-081617601169
- Modhumita GD, Radha V, Karpaga RSB (2017) Characterization of genes expressed in Casuarina equisetifolia in response to elicitation by cell wall components of Trichosporium vesiculosum. Silvae Genetica, 62(1–6), 161–172. https://doi.org/10.1515/sg-2013-0021.10.1515/sg-2013-0021
- Mphahlele MM, Isik F, Mostert-O’Neill MM, Reynolds SM et al. (2020) Expected benefits of genomic selection for growth and wood quality traits in Eucalyptus grandis. Tree Genetics & Genomes, 16(4), 49. https://doi.org/10.1007/s11295-020-01443-1.10.1007/s11295-020-01443-1
- Muchero W, Sondreli KL, Chen JG, Urbanowicz BR et al. (2018) Association mapping, transcriptomics, and transient expression identify candidate genes mediating plant–pathogen interactions in a tree. Proceedings of the National Academy of Sciences, 115(45), 11573–11578.10.1073/pnas.1804428115623311330337484
- Myburg AA, Grattapaglia D, Tuskan GA et al. (2014) The genome of Eucalyptus grandis, Nature. 510(7505), 356–362.10.1038/nature1330824919147
- Naidoo S, Külheim C, Zwart L, Mangwanda R et al. (2014) Uncovering the de-fence responses of Eucalyptus to pests and pathogens in the genomics age. Tree physiology, 34(9), 931–943.10.1093/treephys/tpu07525261123
- Neale DB, Kremer A (2011) Forest tree genomics: growing resources and applications. Nature Reviews Genetics, 12(2), 111–122.
- Norwati A, Norlia B, Rosli HM, Norwati M et al. (2011) Development of transgenic teak (Tectona grandis) expressing a cry1AB genefor control of the skeletoniser. Asia-Pacific Journal of Molecular Biology and Biotechnology, 19(4), 149–156.
- O’Connor K, Hayes B, Topp B (2018) Prospects for increasing yield in macadamia using component traits and genomics. Tree Genetics and Genomes, 14(1), 7. https://doi.org/10.1007/s11295-017-1221-1.10.1007/s11295-017-1221-1
- Ogunwande IA, Flamini G, Adefuye AE et al. (2011) Chemical compositions of Casuarina equisetifolia L., Eucalyptus toreliana L. and Ficus elastica Roxb. ex Hornem cultivated in Nigeria. South African Journal of Botany, 77(3), 645–649.
- Park S, Keathley DE, Han KH (2008) Transcriptional profiles of the annual growth cycle in Populus deltoides. Tree Physiology, 28(3), 321–329. https://doi.org/10.1093/treephys/28.3.321.10.1093/treephys/28.3.32118171656
- Pégard M, Segura V, Muñoz F, Bastien C et al. (2020) Favorable Conditions for Genomic Evaluation to Outperform Classical Pedigree Evaluation Highlighted by a Proof-of-Concept Study in Poplar. Frontiers in Plant Science, 11, 1–23. https://doi.org/10.3389/fpls.2020.581954.10.3389/fpls.2020.581954765590333193528
- Poland JA and Rife TW (2012) Genotyping-by-sequencing for plant breeding and genetics. The Plant Genome, 5(3), 92–102.10.3835/plantgenome2012.05.0005
- Qiu D, Wilson IW, Gan S, Washusen R et al. (2008) Gene expression in Eucalyptus branch wood with marked variation in cellulose microfibril orientation and lacking G-layers. New Phytologist, 179(1), 94–103. https://doi.org/10.1111/j.1469-8137.2008.02439.x.10.1111/j.1469-8137.2008.02439.x18422902
- Quesada T, Li Z, Dervinis C, Li Y et al. (2008) Comparative analysis of the transcriptomes of Populus trichocarpa and Arabidopsis thaliana suggests extensive evolution of gene expression regulation in angiosperms. New Phytologist, 180(2), 408–420. https://doi.org/10.1111/j.1469-8137.2008.02586.x.10.1111/j.1469-8137.2008.02586.x18694447
- Rae AM, Pinel MPC, Bastien C, Sabatti M et al. (2008) QTL for yield in bioenergy Populus: identifying G× E interactions from growth at three contrasting sites. Tree Genetics and Genomes. Springer, 4(1), 97–112.
- Rae AM, Tricker PJ, Bunn SM, Taylor G (2007) Adaptation of tree growth to elevated CO2: quantitative trait loci for biomass in Populus. New Phytologist, 175(1), 59–69.10.1111/j.1469-8137.2007.02091.x17547667
- Ralph S, Oddy C, Cooper D, Yueh H et al. (2006) Genomics of hybrid poplar (Populus trichocarpa× deltoides) interacting with forest tent caterpillars (Malacosoma disstria): normalized and full-length cDNA libraries, expressed sequence tags, and a cDNA microarray for the study of insect-induced defences. Molecular Ecology, 15(5), 1275–1297. https://doi.org/10.1111/j.1365-294X.2006.02824.x.10.1111/j.1365-294X.2006.02824.x16626454
- Ranik M, Creux NM, Myburg AA (2006) Within-tree transcriptome profiling in wood-forming tissues of a fast-growing Eucalyptus tree. Tree Physiology, 26(3), 365–375. https://doi.org/10.1093/treephys/26.3.365.10.1093/treephys/26.3.36516356907
- Resende MDV, Resende MFR, Sansaloni CP, Petroli CD et al. (2012) Genomic selection for growth and wood quality in Eucalyptus: capturing the missing heritability and accelerating breeding for complex traits in forest trees. New Phytologist, 194(1), 116–128. https://doi.org/10.1111/j.1469-8137.2011.04038.x.10.1111/j.1469-8137.2011.04038.x22309312
- Roy J, Mooney HA, Saugier B (2001) Terrestrial global productivity. Elsevier. Sarah R, Tabassum B, Idrees N, Hussain MK (2019) Bio-active Compounds isolated from Neem tree and their applications. Natural bio-active compounds, 509–528. Springer.10.1007/978-981-13-7154-7_17
- Savolainen O, Pyhäjärvi T, Knürr T (2007) Gene flow and local adaptation in trees. Annual Reviews of Ecology Evolution and Systemetics, 38. 595–619.10.1146/annurev.ecolsys.38.091206.095646
- Sjödin A, Street NR, Sandberg G, Gustafsson Pet al. (2009) The Populus Genome Integrative Explorer (PopGenIE): a new resource for exploring the Populus genome. New Phytologist, 182(4), 1013–1025. https://doi.org/10.1111/j.1469-8137.2009.02807.x.10.1111/j.1469-8137.2009.02807.x19383103
- Solomon OL, Berger DK, Myburg AA (2010) Diurnal and circadian patterns of gene expression in the developing xylem of Eucalyptus trees. South African Journal of Botany, 76(3), 425–439. https://doi.org/10.1016/j.sajb.2010.02.087.10.1016/j.sajb.2010.02.087
- Sousa TV, Caixeta ET, Alkimim ER, Oliveira ACB et al. (2017) Population structure and genetic diversity of coffee progenies derived from Catuaí and Híbrido de Timor revealed by genome-wide SNP marker. Tree Genetics & Genomes, 13(6), 124. https://doi.org/10.1007/s11295-017-1208-y.10.1007/s11295-017-1208-y
- Souza LM, Francisco FR, Gonçalves PS, Junior EJS et al. (2019) Genomic selection in rubber tree breeding: a comparison of models and methods for managing G× E interactions. Frontiers in plant science, 1353. https://doi.org/10.3389/fpls.2019.0135310.3389/fpls.2019.01353682423431708955
- Stanton BJ, Neale DB, Li S, Stanton BJ et al. (2010) Genetics and Genomics of Populus. Springer, 8. https://doi.org/10.1007/978-1-4419-1541-2.10.1007/978-1-4419-1541-2
- Tagu D, Bastien C, Faivre-Rampant P, Garbaye J et al. (2005) Genetic analysis of phenotypic variation for ectomycorrhiza formation in an interspecific F1 poplar full-sib family. Mycorrhiza. Springer, 15(2), 87–91. https://doi.org/10.1007/s00572-004-0302-910.1007/s00572-004-0302-915015061
- Tan QG and Luo XD (2011) Meliaceous limonoids: chemistry and biological activities. Chemical reviews, 111(11), 7437–7522.10.1021/cr900402321894902
- Thumma BR, Baltunis BS, Bell JC, Emebiri LC et al. (2010) Quantitative trait locus (QTL) analysis of growth and vegetative propagation traits in Eucalyptus ni-tens full-sib families. Tree Genetics & Genomes, 6(6), 877–889. https://doi.org/10.1007/s11295-010-0298-6.10.1007/s11295-010-0298-6
- Tripathi AM, Yadav A, Saikia SP Roy S (2017) Global gene expression pattern in a forest tree species, Tectona grandis (Linn. F.), under limited water supply. Tree Genetics & Genomes, 13(3), 66. https://doi.org/10.1007/s11295-017-1151-y.10.1007/s11295-017-1151-y
- Tschaplinski TJ, Tuskan GA, Sewell MM, Gebre GM et al. (2006) Phenotypic variation and quantitative trait locus identification for osmotic potential in an interspecific hybrid inbred F2 poplar pedigree grown in contrasting environments. Tree Physiology, 26(5), 595–604. https://doi.org/10.1093/treephys/26.5.59510.1093/treephys/26.5.59516452073
- Tuskan GA, DiFazio S, Jansson S, Bohlmann J et al. (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). American Association for the Advancement of Science, 313(5793), 1596–1604. https://doi.org/10.1126/science.1128691.10.1126/science.112869116973872
- Tuskan GA., Andrew TG, Jeremy S, Stephen PD, Alexander M, Grattapaglia D, Lawrence B. Smart et al. (2018) “Hardwood tree genomics: unlocking woody plant biology.” Frontiers in plant science 9, p1799.10.3389/fpls.2018.01799630436330619389
- Varshney RK, Sinha P, Singh VK, Kumar A, Zhang Q, Bennetzen JL (2020) “5Gs for crop genetic improvement.” Current Opinion in Plant Biology 56, 190-196.10.1016/j.pbi.2019.12.004745026932005553
- Waheed S, Zeng L (2020) The Critical Role of miRNAs in Regulation of Flowering Time and Flower Development. Genes (Basel),11(3), 319. doi: 10.3390/genes11030319. PMID: 32192095; PMCID: PMC7140873.10.3390/genes11030319714087332192095
- Varshney RK, Sinha P, Singh VK, Kumar A, Zhang Q, Bennetzen JL (2020) “5Gs for crop genetic improvement.” Current Opinion in Plant Biology 56, 190-196.10.1016/j.pbi.2019.12.004
- Wang H, Wang N, Huo Y (2020) Multi-tissue transcriptome analysis using hybrid-sequencing reveals potential genes and biological pathways associated with azadirachtin A biosynthesis in neem (azadirachta indica). BMC genomics, 21(1), 1–17. https://doi.org/10.1186/s12864-020-07124-610.1186/s12864-020-07124-6759252333115410
- Wang J, Ding J, Tan B, Robinson KM et al. (2018) A major locus controls local adaptation and adaptive life history variation in a perennial plant. Genome biology, 19(1), 1–17. https://doi.org/10.1186/s13059-018-1444-y10.1186/s13059-018-1444-y598559029866176
- Wang M, Qi X, Zhao S, Zhang S et al. (2009) Dynamic changes in transcripts during regeneration of the secondary vascular system in Populus tomentosa Carr. revealed by cDNA microarrays. BMC genomics. Springer, 10(1), 215. https://doi.org/10.1186/1471-2164-10-21510.1186/1471-2164-10-215268540919426563
- Wang S, Zhang H, Li X, Zhang J (2016) Gene expression profiling analysis reveals a crucial gene regulating metabolism in adventitious roots of neem (Azadirachta indica). RSC Advances, 6(115), 114889–114898. https://doi.org/10.1039/C6RA20494E.10.1039/C6RA20494E
- Wegrzyn JL, Falk T, Grau E, Buehler S et al. (2020) Cyberinfrastructure and resources to enable an integrative approach to studying forest trees. Evolutionary Applications, 13(1), 228–241. https://doi.org/10.1111/eva.12860.10.1111/eva.12860693559331892954
- Westbrook JW, Zhang Q, Mandal MK, Jenkins EV et al. (2020) Optimizing genomic selection for blight resistance in American chestnut backcross populations: A trade-off with American chestnut ancestry implies resistance is polygenic. Evolutionary applications, 13(1), 31–47. https://doi.org/10.1111/eva.1288610.1111/eva.12886693559431892942
- Wheeler GS, Taylor GS, Gaskin JF, Purcell MF (2011) Ecology and management of Sheoak (Casuarina spp.), an invader of coastal Florida, USA. Journal of Coastal Research, 27(3), 485–492. https://doi.org/10.2112/JCOASTRES-D-09-00110.110.2112/JCOASTRES-D-09-00110.1
- Yang X, Qian X, Wang Z (2019) The complete chloroplast genome of Casuarina glauca. Mitochondrial DNA Part B: Resources. Taylor & Francis, 4(1), 357–358. https://doi.org/10.1080/23802359.2018.1536476.10.1080/23802359.2018.1536476
- Yasodha R, Vasudeva R, Balakrishnan S, Sakthi AR et al. (2018) Draft genome of a high value tropical timber tree, Teak (Tectona grandis L. f): insights into SSR diversity, phylogeny and conservation. DNA Research, 25(4), 409–419.
- Ye G, Zhang H, Chen B, Nie S (2019) De novo genome assembly of the stress tolerant forest species Casuarina equisetifolia provides insight into secondary growth. Plant Journal, 97(4), 779–794. https://doi.org/10.1111/tpj.14159.10.1111/tpj.1415930427081
- Zhang H, Yin W, Xia X (2008) Calcineurin B-Like family in Populus: comparative genome analysis and expression pattern under cold, drought and salt stress treatment. Plant Growth Regulation. Springer, 56(2), 129–140. https://doi.org/10.1007/s10725-008-9293-410.1007/s10725-008-9293-4
- Zhang H, Yin T (2016) Identifying candidate genes for wood formation in poplar based on microarray network analysis and graph theory. Tree Genetics and Genomes, 12(3), 61. https://doi.org/10.1007/s11295-016-1016-9.10.1007/s11295-016-1016-9
- Zhang J, Yuan H, Yang Q, Li M et al. (2017) The genetic architecture of growth traits in Salix matsudana under salt stress. Horticulture Research, 4. https://doi.org/10.1038/hortres.2017.2410.1038/hortres.2017.24546994228638623
- Zhao D, Hamilton JP, Bhat WW, Johnson SR et al. (2019) A chromosomal-scale genome assembly of Tectona grandis reveals the importance of tandem gene duplication and enables discovery of genes in natural product biosynthetic pathways. GigaScience, 8(3), 1–10. https://doi.org/10.1093/gigascience/giz005.10.1093/gigascience/giz005639420630698701
- Zhao Y, Sun J, Xu P, Zhang R et al. (2014) Intron-mediated alternative splicing of WOOD-ASSOCIATED NAC TRANSCRIPTION FACTOR1B regulates cell wall thickening during fiber development in Populus species. Plant physiology. American Society of Plant Biologists, 164(2), 765–776.10.1104/pp.113.231134391210424394777