References
- Alvarez MV, Moreira MdR, Roura SI, Ayala-Zavala JF, González-Aguilar GA (2015) Using natural antimicrobials to enhance the safety and quality of fresh and processed fruits and vegetables: Types of antimicrobials. In: Handbook of Natural Antimicrobials for Food Safety and Quality. Taylor TM (ed) Oxford: Woodhead Publishing, pp 287-313. https://doi.org/10.1016/b978-1-78242-034-7.00013-x10.1016/B978-1-78242-034-7.00013-X
- Ament K, Krasikov V, Allmann S, Rep M, Takken FLW, Schuurink RC (2010) Methyl salicylate production in tomato affects biotic interactions. The Plant Journal 62(1):124-134. https://dx.doi.org/10.1111/j.1365-313X.2010.04132.x10.1111/j.1365-313X.2010.04132.x
- Araminienė V, Varnagiryte-Kabasinskiene I (2014) Research on birch species in Lithuania: A review study. In: Research for Rural Development 2. pp 50-56.
- Ashburner K, McAllister HA, Hague J, Brown A, Williams P, Williams M, Rix M (2013) The Genus Betula: A Taxonomic Revision of Birches. Royal Botanic Gardens, London: Kew Publishing
- Aspelmeier S, Leuschner C (2004) Genotypic variation in drought response of silver birch (Betula pendula): leaf water status and carbon gain. Tree Physiology 24(5):517-528. https://dx.doi.org/10.1093/treephys/24.5.51710.1093/treephys/24.5.517
- Atkinson MD (1992) Betula pendula Roth (B. Verrucosa Ehrh.) and B. pubescens Ehrh. Journal of Ecology 80(4):837-870. https://dx.doi.org/10.2307/226087010.2307/2260870
- Chaiprasongsuk M, Zhang C, Qian P, Chen X, Li G, Trigiano RN, Guo H, Chen F (2018) Biochemical characterization in Norway spruce (Picea abies) of SA-BATH methyltransferases that methylate phytohormones. Phytochemistry 149:146-154. https://dx.doi.org/ https://doi.org/10.1016/j.phytochem.2018.02.01010.1016/j.phytochem.2018.02.010
- Chen F, D’Auria JC, Tholl D, Ross JR, Gershenzon J, Noel JP, Pichersky E (2003) An Arabidopsis thaliana gene for methylsalicylate biosynthesis, identified by a biochemical genomics approach, has a role in defense. The Plant Journal 36(5):577-588. https://dx.doi.org/10.1046/j.1365-313X.2003.01902.x10.1046/j.1365-313X.2003.01902.x
- Chen S, Wang Y, Yu L. et al. (2012) Genome sequence and evolution of Betula platyphylla Hortic Res 8, 37. https://doi.org/10.1038/s41438-021-00481-710.1038/s41438-021-00481-7
- Cheong J-J, Choi YD (2003) Methyl jasmonate as a vital substance in plants. Trends in Genetics 19(7):409-413. https://dx.doi.org/ https://doi.org/10.1016/S0168-9525(03)00138-010.1016/S0168-9525(03)00138-0
- Dagan T, Talmor Y, Graur D (2002) Ratios of radical to conservative amino acid replacement are affected by mutational and compositional factors and may not be indicative of positive darwinian selection. Molecular Biology and Evolution, Volume 19, Issue 7. Pages 1022–1025, https://doi.org/10.1093/oxfordjournals.molbev.a00416110.1093/oxfordjournals.molbev.a004161
- D’Auria JC, Chen F, Pichersky E (2003) Chapter eleven The SABATH family of MTS in Arabidopsis thaliana and other plant species. In: Recent Advances in Phytochemistry. Romeo JT (ed): Elsevier, pp 253-283. https://doi.org/10.1016/s0079-9920(03)80026-610.1016/S0079-9920(03)80026-6
- Delker C, Raschke M, Fau-Quint A, Quint M (2008) Auxin dynamics: the dazzling complexity of a small molecule’s message. Planta 227, 929–941. https://doi.org/10.1007/s00425-008-0710-8.10.1007/s00425-008-0710-818299888
- Die JV, Gil J, Millan T (2018) Genome-wide identification of the auxin response factor gene family in Cicer arietinum. BMC Genomics 19(1):301. https://dx.doi.org/10.1186/s12864-018-4695-910.1186/s12864-018-4695-9592175629703137
- Dogru E, Warzecha H, Seibel F, Haebel S, Lottspeich F, Stöckigt J (2000) The gene encoding polyneuridine aldehyde esterase of monoterpenoid indole alkaloid biosynthesis in plants is an ortholog of the alpha/betahydrolase super family. 267(5):1397-406. https://doi.org/10.1046/j.1432-1327.2000.01136.x10.1046/j.1432-1327.2000.01136.x10691977
- Dubois H, Verkasalo E, Claessens H (2020) Potential of Birch (Betula pendula Roth and B. pubescens Ehrh.) for forestry and forest-based industry sector within the changing climatic and socio-economic context of Western Europe. Forests 11(3):336. https://dx.doi.org/http://dx.doi.org/10.3390/f1103033610.3390/f11030336
- Dudareva N, Murfitt LM, Mann CJ, Gorenstein N, Kolosova N, Kish CM, Bonham C, Wood K (2000) developmental regulation of methyl benzoate biosynthesis and emission in snapdragon Flowers. The Plant Cell 12(6):949. https://dx.doi.org/10.1105/tpc.12.6.94910.1105/tpc.12.6.94914909510852939
- Effmert U, Saschenbrecker S, Ross J, Negre F, Fraser CM, Noel JP, Dudareva N, Piechulla B (2005) Floral benzenoid carboxyl methyltransferases: From in vitro to in planta function. Phytochemistry 66(11):1211-1230. https://dx.doi.org/ https://doi.org/10.1016/j.phytochem.2005.03.03110.1016/j.phytochem.2005.03.031286458715946712
- El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M et al. (2018) The Pfam protein families database in 2019. Nucleic Acids Res 47(D1):D427-D432. https://dx.doi.org/10.1093/nar/gky99510.1093/nar/gky995632402430357350
- Fischer A, Lindner M, Abs C, Lasch P (2002) Vegetation dynamics in central european forest ecosystems (near-natural as well as managed) after storm events. Folia Geobotanica 37(1):17-32. https://dx.doi.org/10.1007/BF0280318810.1007/BF02803188
- Forouhar F, Lee IS, Vujcic J, Vujcic S, Shen J, Vorobiev SM, Xiao R, Acton TB, Montelione GT, Porter CW, Tong L (2005) Structural and functional evidence for Bacillus subtilis PaiA as a novel N1-spermidine/spermine acetyltransferase. J Biol Chem 280(48):40328-40336. https://dx.doi.org/10.1074/jbc.M50533220010.1074/jbc.M50533220016210326
- Gang H, Li R, Zhao Y, Liu G, Chen S, Jiang J (2019) Loss of GLK1 transcription factor function reveals new insights in chlorophyll biosynthesis and chloroplast development. Journal of Experimental Botany 70(12):3125-3138. https://dx.doi.org/10.1093/jxb/erz12810.1093/jxb/erz12830921458
- Gel B, Serra E (2017) karyoploteR: an R/Bioconductor package to plot customizable linear genomes displaying arbitrary data. https://dx.doi.org/10.1101/12283810.1101/122838
- Gilbert W (1987) The exon theory of genes. 52:901-5. https://doi.org/10.1101/sqb.1987.052.01.09810.1101/SQB.1987.052.01.0982456887
- Han X-M, Yang Q, Liu Y-J, Yang Z-L, Wang X-R, Zeng Q-Y, Yang H-L (2017) Evolution and function of the populus SABATH family reveal that a single amino acid change results in a substrate switch. Plant and Cell Physiology 59(2):392-403. https://dx.doi.org/10.1093/pcp/pcx19810.1093/pcp/pcx19829237058
- Hemery GE, Clark JR, Aldinger E, Claessens H, Malvolti ME, O’Connor E, Raftoyannis Y, Savill PS, Brus R (2010) Growing scattered broadleaved tree species in Europe in a changing climate: a review of risks and opportunities. Forestry: An International Journal of Forest Research 83(1):65-81. https://dx.doi.org/10.1093/forestry/cpp03410.1093/forestry/cpp034
- Holmquist M (2000) Alpha beta-hydrolase fold enzymes structures, functions and mechanisms. Current Protein and Peptide Science 1(2):209-235. https://dx.doi.org/10.2174/138920300338140510.2174/138920300338140512369917
- Hynynen J, Niemistö P, Viherä-Aarnio A, Brunner A, Hein S, Velling P (2009) Silvi-culture of birch (Betula pendula Roth and Betula pubescens Ehrh.) in northern Europe. Forestry: An International Journal of Forest Research 83(1):103-119. https://dx.doi.org/10.1093/forestry/cpp03510.1093/forestry/cpp035
- Joshi CP, Chiang VL (1998) Conserved sequence motifs in plant S-adenosyl-L-methionine-dependent methyltransferases. Plant Molecular Biology 37(4):663-674. https://dx.doi.org/10.1023/A:100603521088910.1023/A:1006035210889
- Kapteyn J, Qualley AV, Xie Z, Fridman E, Dudareva N, Gang DR (2007) Evolution of Cinnamate/p-coumarate carboxyl methyltransferases and their role in the biosynthesis of methylcinnamate. The Plant cell 19(10):3212-3229. https://dx.doi.org/10.1105/tpc.107.05415510.1105/tpc.107.054155217472117951447
- Köllner TG, Lenk C, Zhao N, Seidl-Adams I, Gershenzon J, Chen F, Degenhardt J (2010) Herbivore-induced SABATH methyltransferases of maize that methylate anthranilic acid using s-adenosyl-L-methionine. Plant Physiology 153(4):1795-1807. https://dx.doi.org/10.1104/pp.110.15836010.1104/pp.110.158360292388920519632
- Kong H, Landherr LL, Frohlich MW, Leebens-Mack J, Ma H, DePamphilis CW (2007) Patterns of gene duplication in the plant SKP1 gene family in angiosperms: evidence for multiple mechanisms of rapid gene birth. The Plant Journal 50(5):873-885. https://dx.doi.org/10.1111/j.1365-313X.2007.03097.x10.1111/j.1365-313X.2007.03097.x17470057
- Koonin EV (2006) The origin of introns and their role in eukaryogenesis: a compromise solution to the introns-early versus introns-late debate? Biol Direct 1:22-22. https://dx.doi.org/10.1186/1745-6150-1-2210.1186/1745-6150-1-22157033916907971
- Koski V, Rousi M (2005) A review of the promises and constraints of breeding silver birch (Betula pendula Roth) in Finland. Forestry: An International Journal of Forest Research 78(2):187-198. https://dx.doi.org/10.1093/forestry/cpi01710.1093/forestry/cpi017
- Kumar D, Klessig DF (2003) High-affinity salicylic acid-binding protein 2 is required for plant innate immunity and has salicylic acid-stimulated lipase activity. Proceedings of the National Academy of Sciences 100, 16101–16106. https://dx.doi.org/doi.org/10.1073/pnas.030716210010.1073/pnas.030716210030769914673096
- Kumar D, Klessig DF (2003) High-affinity salicylic acid-binding protein 2 is required for plant innate immunity and has salicylic acid-stimulated lipase activity. 100 (26) 16101-16106. https://doi.org/10.1073/pnas.030716210010.1073/pnas.0307162100
- Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35(6):1547-1549. https://dx.doi.org/10.1093/molbev/msy09610.1093/molbev/msy096596755329722887
- Kuzmin DA, Feranchuk SI, Sharov VV et al. (2019) Stepwise large genome assembly approach: a case of Siberian larch (Larix sibirica Ledeb). BMC Bioinformatics 20, 37. https://doi.org/10.1186/s12859-018-2570-y10.1186/s12859-018-2570-y636258230717661
- Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research 30(1):325-327. https://dx.doi.org/10.1093/nar/30.1.32510.1093/nar/30.1.3259909211752327
- Lima Silva CCd, Shimo HM, de Felício R, Mercaldi GF, Rocco SA, Benedetti CE (2019) Structure-function relationship of a citrus salicylate methylesterase and role of salicylic acid in citrus canker resistance. Scientific Reports 9(1):3901. https://dx.doi.org/10.1038/s41598-019-40552-310.1038/s41598-019-40552-3640595030846791
- Martin DM, Gershenzon J, Bohlmann J (2003) Induction of volatile terpene bio-synthesis and diurnal emission by methyl jasmonate in foliage of Norway Spruce. Plant Physiology 132(3):1586. https://dx.doi.org/10.1104/pp.103.02119610.1104/pp.103.02119616709612857838
- Moore RC, Purugganan MD (2003) The early stages of duplicate gene evolution. Proceedings of the National Academy of Sciences 100(26):15682. https://dx.doi.org/10.1073/pnas.253551310010.1073/pnas.253551310030762814671323
- Nardini M, Dijkstra BW (1999) α/β Hydrolase fold enzymes: the family keeps growing. Current Opinion in Structural Biology 9(6):732-737. https://dx.doi.org/ https://doi.org/10.1016/S0959-440X(99)00037-810.1016/S0959-440X(99)00037-8
- Nystedt B, Street N, Wetterbom A et al. (2013) The Norway spruce genome sequence and conifer genome evolution. Nature 497, 579–584. https://doi.org/10.1038/nature1221110.1038/nature12211
- Park S-W, Kaimoyo E, Kumar D, Mosher S, Klessig DF (2007) Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318(5847):113. https://dx.doi.org/10.1126/science.114711310.1126/science.1147113
- Patthy L (1987) Intron-dependent evolution: Preferred types of exons and introns. FEBS Letters 214(1):1-7. https://dx.doi.org/10.1016/0014-5793(87)80002-910.1016/0014-5793(87)80002-9
- Prévosto B, Curt T (2004) Dimensional relationships of naturally established European beech trees beneath Scots pine and Silver birch canopy. Forest Ecology and Management 194(1):335-348. https://doi.org/10.1016/j.foreco.2004.02.02010.1016/j.foreco.2004.02.020
- Qin G, Gu H, Zhao Y, Ma Z, Shi G, Yang Y, Pichersky E, Chen H, Liu M, Chen Z, Qu L-J (2005) An indole-3-acetic acid carboxyl methyltransferase regulates Arabidopsis leaf development. The Plant Cell 17(10):2693-2704. https://dx.doi.org/10.1105/tpc.105.03495910.1105/tpc.105.034959124226616169896
- Ranta H, Hokkanen T, Linkosalo T, Laukkanen L, Bondestam K, Oksanen A (2008) Male flowering of birch: Spatial synchronization, year-to-year variation and relation of catkin numbers and airborne pollen counts. Forest Ecology and Management 255(3):643-650. https://doi.org/10.1016/j.foreco.2007.09.04010.1016/j.foreco.2007.09.040
- Rosenvald K, Tullus A, Ostonen I, Uri V, Kupper P, Aosaar J, Varik M, Sõber J, Niglas A, Hansen R, Rohula G, Kukk M, Sõber A, Lõhmus K (2014) The effect of elevated air humidity on young silver birch and hybrid aspen biomass allocation and accumulation – Acclimation mechanisms and capacity. Forest Ecology and Management 330:252-260. https://doi.org/10.1016/j.foreco.2014.07.01610.1016/j.foreco.2014.07.016
- Ross JR, Nam KH, D‘Auria JC, Pichersky E (1999) S-Adenosyl-l-Methionine: Salicylic acid carboxyl methyltransferase, an enzyme involved in floral scent production and plant defense, represents a new class of plant methyltransferases. Archives of Biochemistry and Biophysics 367(1):9-16. https://doi.org/10.1006/abbi.1999.125510.1006/abbi.1999.125510375393
- Salojärvi J, Smolander O-P, Nieminen K, Rajaraman S, Safronov O, Safdari P et al., (2017) Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch. Nature Genetics 49(6):904-912. https://dx.doi.org/10.1038/ng.386210.1038/ng.386228481341
- Seo HS, Song JT, Cheong JJ, Lee YH, Lee YW, Hwang I, Lee JS, Choi YD (2001) Jasmonic acid carboxyl methyltransferase: a key enzyme for jasmonate-regulated plant responses. Proc Natl Acad Sci U S A 98(8):4788-4793. https://dx.doi.org/10.1073/pnas.08155729810.1073/pnas.0815572983191211287667
- Singewar K, Moschner CR, Hartung E, Fladung M (2020a) Identification and analysis of key genes involved in methyl salicylate biosynthesis in different birch species. PLOS ONE 15(10):e0240246. https://dx.doi.org/10.1371/journal.pone.024024610.1371/journal.pone.0240246754402533031447
- Singewar K, Moschner CR, Hartung E, Fladung M (2020b) Species determination and phylogenetic relationships of the genus Betula inferred from multiple chloroplast and nuclear regions reveal the high methyl salicylate-producing ability of the ancestor. Trees 34, 1131–1146. https://doi.org/10.1007/s00468-020-01984-x10.1007/s00468-020-01984-x
- Stuhlfelder C, Mueller MJ, Warzecha H (2004) Cloning and expression of a tomato cDNA encoding a methyl jasmonate cleaving esterase. European Journal of Biochemistry 271(14):2976-2983. https://dx.doi.org/10.1111/j.1432-1033.2004.04227.x10.1111/j.1432-1033.2004.04227.x15233793
- Teale W, Paponov I, Palme K (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol 7, 847–859 (2006). https://doi.org/10.1038/nrm202010.1038/nrm202016990790
- Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic acids research 22(22):4673-4680. https://dx.doi.org/10.1093/nar/22.22.467310.1093/nar/22.22.46733085177984417
- Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N et al. (2006) The Genome of Black Cottonwood, Populus trichocarpa (Torr. & Gray). Science 313(5793):1596. https://dx.doi.org/10.1126/science.112869110.1126/science.112869116973872
- Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P et al. (2010) The genome of the domesticated apple (Malus × domes-tica Borkh.). Nature Genetics 42(10):833-839. https://dx.doi.org/10.1038/ng.65410.1038/ng.65420802477
- Vidgren J, Svensson LA, Liljas A (1994) Crystal structure of catechol O-methyltransferase. Nature 368(6469):354-358. https://dx.doi.org/10.1038/368354a010.1038/368354a08127373
- Vlot AC, Liu P-P, Cameron RK, Park S-W, Yang Y, Kumar D, Zhou F et al. (2008) Identification of likely orthologs of tobacco salicylic acid-binding protein 2 and their role in systemic acquired resistance in Arabidopsis thaliana. The Plant Journal 56(3):445-456. https://dx.doi.org/10.1111/j.1365-313X.2008.03618.x10.1111/j.1365-313X.2008.03618.x18643994
- Westfall CS, Muehler AM, Jez JM (2013) Enzyme action in the regulation of plant hormone responses. The Journal of biological chemistry 288(27):19304-19311. https://dx.doi.org/10.1074/jbc.R113.47516010.1074/jbc.R113.475160370763423709222
- Xie R, Li Y, He S, Zheng Y, Yi S, Lv Q, Deng L (2014) Genome-wide analysis of citrus R2R3MYB genes and their spatiotemporal expression under stresses and hormone treatments. PLOS ONE 9(12):e113971. https://dx.doi.org/10.1371/journal.pone.011397110.1371/journal.pone.0113971425639325473954
- Yang Y, Xu R, Ma C-J, Vlot AC, Klessig DF, Pichersky E (2008) Nactive methyl indole-3-acetic acid ester can be hydrolyzed and activated by several esterases belonging to the AtMES esterase family of Arabidopsis. Plant Physiology 147(3):1034. https://dx.doi.org/10.1104/pp.108.11822410.1104/pp.108.118224244252718467465
- Zhao N, Boyle B, Duval I, Ferrer J-L, Lin H, Seguin A, Mackay J, Chen F (2009) SA-BATH methyltransferases from white spruce (Picea glauca): gene cloning, functional characterization and structural analysis. Tree Physiology 29(7):947-957. https://dx.doi.org/10.1093/treephys/tpp02310.1093/treephys/tpp02319369216
- Zhao N, Ferrer J-L, Ross J, Guan J, Yang Y, Pichersky E, Noel JP, Chen F (2008) Structural, biochemical, and phylogenetic analyses suggest that indole-3-acetic acid methyltransferase is an evolutionarily ancient member of the SABATH family. Plant Physiology 146(2):455. https://dx.doi.org/10.1104/pp.107.11004910.1104/pp.107.110049224584618162595
- Zhao N, Guan J, Forouhar F, Tschaplinski TJ, Cheng Z-M, Tong L, Chen F (2009) Two poplar methyl salicylate esterases display comparable biochemical properties but divergent expression patterns. Phytochemistry 70(1):32-39. https://doi.org/10.1016/j.phytochem.2008.11.01410.1016/j.phytochem.2008.11.01419136124
- Zhao N, Lin H, Lan S, Jia Q, Chen X, Guo H, Chen F (2016) VvMJE1 of the grapevine (Vitis vinifera) VvMES methylesterase family encodes for methyl jasmo-nate esterase and has a role in stress response. Plant Physiology and Biochemistry 102:125-132. https://doi.org/10.1016/j.plaphy.2016.02.02710.1016/j.plaphy.2016.02.02726934101
- Zhao N, Yao J, Chaiprasongsuk M, Li G, Guan J, Tschaplinski TJ, Guo H, Chen F (2013) Molecular and biochemical characterization of the jasmonic acid methyltransferase gene from black cottonwood (Populus trichocarpa). Phytochemistry 94:74-81. https://doi.org/10.1016/j.phytochem.2013.06.01410.1016/j.phytochem.2013.06.01423849543
- Zhang Y, Goritschnig S, Dong X, Li X (2003) A gain-of-function mutation in a plant disease resistance gene leads to constitutive activation of downstream signal transduction pathways in suppressor of npr1-1, constitutive 1, The Plant Cell, Volume 15, Issue 11. Pages 2636–2646. https://doi.org/10.1105/tpc.01584210.1105/tpc.01584228056714576290
- Zubieta C, Ross JR, Koscheski P, Yang Y, Pichersky E, Noel JP (2003) Structural basis for substrate recognition in the salicylic acid carboxyl methyltransferase family. The Plant Cell 15(8):1704. https://doi.org/10.1105/tpc.01454810.1105/tpc.01454816716312897246