Have a personal or library account? Click to login
Development of novel Quercus rubra chloroplast genome CAPS markers for haplotype identification Cover

Development of novel Quercus rubra chloroplast genome CAPS markers for haplotype identification

Open Access
|Aug 2020

References

  1. Alexander LW, Woeste KE (2014) Pyrosequencing of the northern red oak (Quercus rubra L.) chloroplast genome reveals high quality polymorphisms for population management. Tree Genetics & Genomes 10(4): 803–812. https://doi.org/10.1007/s11295-013-0681-110.1007/s11295-013-0681-1
  2. Birchenko I, Feng Y, Romero-Severson J (2009) Biogeographical distribution of chloroplast diversity in northern red oak (Quercus rubra L.). The American Midland Naturalist 161(1): 134–145. https://doi.org/10.1674/0003-0031-161.1.13410.1674/0003-0031-161.1.134
  3. Borkowski DS, McCleary T, McAllister M, Romero-Severson J (2014) Primers for 52 polymorphic regions in the Quercus rubra chloroplast, 47 of which amplify across 11 tracheophyte clades. Tree Genetics & Genomes 10(4): 885–893. https://doi.org/10.1007/s11295-014-0729-x10.1007/s11295-014-0729-x
  4. Deguilloux M-F, Dumolin-Lapègue S, Gielly D, Grivet D, Petit RJ (2003) A set of primers for the amplification of chloroplast microsatellites in Quercus. Molecular Ecology Notes 3(1): 24–27. https://doi.org/10.1046/j.1471-8286.2003.00339.x10.1046/j.1471-8286.2003.00339.x
  5. Desmarais KM (1998) Northern red oak regeneration: biology and silviculture, University of New Hampshire, Department of Natural Resources, Durham, NH.
  6. Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5. A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10(3): 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x10.1111/j.1755-0998.2010.02847.x21565059
  7. Finkeldey R, Gailing O (2013) Genetics of chloroplasts. In: Maloy S, Hughes K (eds) Brenner’s Encyclopedia of Genetics. Elsevier, pp 525–52710.1016/B978-0-12-374984-0.00231-X
  8. Gailing O, Wachter H, Heyder J, Rogge M, Finkeldey R (2009) Chloroplast DNA analyses of very old, presumably autochthonous Quercus robur L. stands in North Rhine-Westphalia. Forst- und Jagdzeitung 180: 221–227
  9. Grivet D, Deguilloux M-F, Petit RJ, Sork VL (2006) Contrasting patterns of historical colonization in white oaks (Quercus spp.) in California and Europe. Molecular Ecology 15(13): 4085–4093. https://doi.org/10.1111/j.1365-294X.2006.03083.x10.1111/j.1365-294X.2006.03083.x17054504
  10. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98
  11. Kaundun SS, Matsumoto S (2003) Development of CAPS markers based on three key genes of the phenylpropanoid pathway in tea, Camellia sinensis (L.) O. Kuntze, and differentiation between assamica and sinensis varieties. TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik 106(3): 375–383. https://doi.org/10.1007/s00122-002-0999-910.1007/s00122-002-0999-912589537
  12. Kibbe WA (2007) OligoCalc. An online oligonucleotide properties calculator. Nucleic Acids Research 35(Web Server issue): W43-6
  13. Liesebach M, Schneck V (2011) Entwicklung von amerikanischen und europäischen Herkünften der Roteiche in Deutschland. Development of American and European provenances of northern red oak in Germany. Forstarchiv 82(4): 125–133
  14. Lind JF, Gailing O (2013) Genetic structure of Quercus rubra L. and Quercus ellipsoidalis E. J. Hill populations at gene-based EST-SSR and nuclear SSR markers. Tree Genetics & Genomes 9(3): 707–722. https://doi.org/10.1007/s11295-012-0586-410.1007/s11295-012-0586-4
  15. Lind-Riehl JF, Sullivan AR, Gailing O (2014) Evidence for selection on a CON-STANS-like gene between two red oak species. Annals of Botany 113(6): 967–975. https://doi.org/10.1093/aob/mcu01910.1093/aob/mcu019399763724615344
  16. Magni CR, Ducousso A, Caron H, Petit RJ, Kremer A (2005) Chloroplast DNA variation of Quercus rubra L. in North America and comparison with other Fagaceae. Mol Ecol 14(2): 513–524. https://doi.org/10.1111/j.1365-294X.2005.02400.x10.1111/j.1365-294X.2005.02400.x
  17. Nagel R-V (2015) Roteiche (Quercus rubra L.). In: Vor T, Spellmann H, Bolte A et al (eds) Potenziale und Risiken eingeführter Baumarten. Göttingen University Press, Göttingen: 219-267
  18. Nguyen VB, Giang VNL, Waminal NE, Park H-S, Kim N-H, Jang W, Lee J, Yang T-J (2018) Comprehensive comparative analysis of chloroplast genomes from seven Panax species and development of an authentication system based on species-unique single nucleotide polymorphism markers. Journal of Ginseng Research 44: 135-144. https://doi.org/10.1016/j.jgr.2018.06.00310.1016/j.jgr.2018.06.003
  19. Petit RJ, Brewer S, Bordács S, Burg K, Cheddadi R, Coart E, Cottrell J, Csaikl UM, van Dam B, Deans JD, Espinel S, Fineschi S, Finkeldey R, Glaz I, Goicoechea PG, Jensen JS, König AO, Lowe AJ, Madsen SF, Mátyás G, Munro RC, Popescu F, Slade D, Tabbener H, Vries SGM de, Ziegenhagen B, Beaulieu J-L de, Kremer A (2002) Identification of refugia and post-glacial colonisation routes of European white oaks based on chloroplast DNA and fossil pollen evidence. Forest Ecology and Management 156(1-3): 49–74. https://doi.org/10.1016/S0378-1127(01)00634-X10.1016/S0378-1127(01)00634-X
  20. Petit RJ, Kremer A, Wagner DB (1993) Geographic structure of chloroplast DNA polymorphisms in European oaks. TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik 87(1-2): 122–128. https://doi.org/10.1007/BF0022375510.1007/BF0022375524190203
  21. Pettenkofer T, Burkardt K, Ammer C, Vor T, Finkeldey R, Müller M, Krutovsky K, Vornam B, Leinemann L, Gailing O (2019) Genetic diversity and differentiation of introduced red oak (Quercus rubra) in Germany in comparison to reference native North American populations. European Journal of Forest Research 138(2): 275-285. https://doi.org/10.1007/s10342-019-01167-510.1007/s10342-019-01167-5
  22. Weising K, Gardner RC (1999) A set of conserved PCR Primers for the analysis of simple sequence repeat polymorphisms in chloroplast genomes of dicotyledonous angiosperms. Genome 42(1): 9–19. https://doi.org/10.1139/g98-10410.1139/g98-104
  23. Zhang R, Hipp AL, Gailing O (2015) Sharing of chloroplast haplotypes among red oak species suggests interspecific gene flow between neighboring populations. Botany 93(10): 691–700. https://doi.org/10.1139/cjb-2014-026110.1139/cjb-2014-0261
DOI: https://doi.org/10.2478/sg-2020-0011 | Journal eISSN: 2509-8934 | Journal ISSN: 0037-5349
Language: English
Page range: 78 - 85
Published on: Aug 20, 2020
Published by: Johann Heinrich von Thünen Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2020 Tim Pettenkofer, Reiner Finkeldey, Markus Müller, Konstantin V. Krutovsky, Barbara Vornam, Ludger Leinemann, Oliver Gailing, published by Johann Heinrich von Thünen Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.