Have a personal or library account? Click to login
Genetic diversity and structure of Oriental and European beech populations from Iran and Europe Cover

Genetic diversity and structure of Oriental and European beech populations from Iran and Europe

Open Access
|Jul 2020

References

  1. Ahmadi MT, Attarod P, Mohadjer MRM, Rahmani R, Fathi J (2009) Partitioning rainfall into throughfall, stemflow, and interception loss in an oriental beech (Fagus orientalis Lipsky) forest during the growing season. Turkish Journal of Agriculture and Forestry 33(6):557-568. doi: 10.3906/tar-0902-310.3906/tar-0902-3
  2. Bayramzadeh V, Attarod P, Ahmadi MT, Ghadiri M, Akbari R, Safarkar T, Shirvany A (2012) Variation of leaf morphological traits in natural populations of Fagus orientalis Lipsky in the Caspian forests of Northern Iran. Annals of Forest Research 55(1):33-42. doi: 10.15287/afr.2012.73
  3. Bijarpasi MM, Shahraji TR, Lahiji HS (2019) Genetic variability and heritability of some morphological and physiological traits in Fagus orientalis Lipsky along an elevation gradient in Hyrcanian forests. Folia Oecologica 46(1):45-53. https://doi.org/10.2478/foecol-2019-000710.2478/foecol-2019-0007
  4. Brownstein MJ, Carpten JD, Smith JR (1996) Modulation of non-templated nucleotide addition by Taq DNA polymerase: primer modifications that facilitate genotyping. Biotechniques 20(6):1004-1006, 1008-1010. https://doi.org/10.2144/96206st0110.2144/96206st018780871
  5. Burger K, Müller M, Gailing O (2018) Characterization of EST-SSRs for European beech (Fagus sylvatica L.) and their transferability to Fagus orientalis Lipsky, Castanea dentata Bork., and Quercus rubra L. Silvae Genetica 67(1):127-132. https://doi.org/10.2478/sg-2018-001910.2478/sg-2018-0019
  6. Derory J, Leger P, Garcia V, Schaeffer J, Hauser MT, Salin F, Luschnig C, Plomion C, Glossl J, Kremer A (2006) Transcriptome analysis of bud burst in sessile oak (Quercus petraea). New Phytologist 170(4):723-738. https://doi.org/10.1111/j.1469-8137.2006.01721.x10.1111/j.1469-8137.2006.01721.x16684234
  7. Dounavi A, Netzer F, Celepirovic N, Ivanković M, Burger J, Figueroa AG, Schön S, Simon J, Cremer E, Fussi B, Konnert M, Rennenberg H (2016) Genetic and physiological differences of European beech provenances (F. sylvatica L.) exposed to drought stress. Forest Ecology and Management 361:226-236. https://doi.org/10.1016/j.foreco.2015.11.01410.1016/j.foreco.2015.11.014
  8. Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources 4(2):359-361. https://doi.org/10.1007/s12686-011-9548-710.1007/s12686-011-9548-7
  9. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14(8):2611-2620. https://doi.org/10.1111/j.1365-294x.2005.02553.x10.1111/j.1365-294X.2005.02553.x15969739
  10. Foll M, Gaggiotti O (2008) A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180(2):977-993. https://doi.org/10.1534/genetics.108.09222110.1534/genetics.108.092221256739618780740
  11. Giraudoux P (2017) pgirmess: data analysis in ecology. R package version 1.6.7. [online]. To be found in
  12. Gömöry D, Paule L, Mačejovský V (2018) Phylogeny of beech in western Eurasia as inferred by approximate Bayesian computation. Acta Societatis Botanicorum Poloniae 87(2):3582. https://doi.org/10.5586/asbp.358210.5586/asbp.3582
  13. Goudet J (1995) FSTAT (Version 1.2): a computer program to calculate F-statistics. Journal of Heredity 86(6):485-486. https://doi.org/10.1093/oxfordjournals.jhered.a11162710.1093/oxfordjournals.jhered.a111627
  14. Hatziskakis S, Tsiripidis I, Papageorgiou AC (2011) Leaf morphological variation in beech (Fagus sylvatica L.) populations in Greece and its relation to their post-glacial origin. Botanical Journal of the Linnean Society 165(4):422-436. https://doi.org/10.1111/j.1095-8339.2011.01124.x10.1111/j.1095-8339.2011.01124.x
  15. Holt SH (2011) Genetic studies of phenotypic variants in the woodland strawberry, (Fragaria vesca). Blacksburg, USA: Virginia Polytechnic Institute and State University, 117 p
  16. Homolka A, Schueler S, Burg K, Fluch S, Kremer A (2013) Insights into drought adaptation of two European oak species revealed by nucleotide diversity of candidate genes. Tree Genetics & Genomes 9(5):1179-1192. https://doi.org/10.1007/s11295-013-0627-710.1007/s11295-013-0627-7
  17. Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I (2015) CLUMP-AK: a program for identifying clustering modes and packaging population structure inferences across K. Molecular Ecology Resources 15(5):1179-1191. https://doi.org/10.1111/1755-0998.1238710.1111/1755-0998.12387453433525684545
  18. Kubisiak T, Carey D, Burdine C, Koch J (2009) Characterization of ten EST-based polymorphic SSR loci isolated from American beech, Fagus grandifolia Ehrh. Permanent genetic resources note added to Molecular Ecology Resources. Molecular Ecology Resources 9(6):1460-1466. doi: 10.1111/j.1755-0998.2009.02759.x10.1111/j.1755-0998.2009.02759.x21564933
  19. Kubisiak TL, Nelson CD, Staton ME, Zhebentyayeva T, Smith C, Olukolu BA, Fang GC, Hebard FV, Anagnostakis S, Wheeler N, Sisco PH, Abbott AG, Sederoff RR (2013) A transcriptome-based genetic map of Chinese chestnut (Castanea mollissima) and identification of regions of segmental homology with peach (Prunus persica). Tree Genetics & Genomes 9(2):557-571. https://doi.org/10.1007/s11295-012-0579-310.1007/s11295-012-0579-3
  20. Langella O (1999) Populations version 1.2.32 [online]. To be found in
  21. Mishra B, Gupta DK, Pfenninger M, Hickler T, Langer E, Nam B, Paule J, Sharma R, Ulaszewski B, Warmbier J, Burczyk J, Thines M (2018) A reference genome of the European beech (Fagus sylvatica L.). Gigascience 7(6):giy063. https://doi.org/10.1093/gigascience/giy06310.1093/gigascience/giy063601418229893845
  22. Modesto IS, Miguel C, Pina-Martins F, Glushkova M, Veloso M, Paulo OS, Batista D (2014) Identifying signatures of natural selection in cork oak (Quercus suber L.) genes through SNP analysis. Tree Genetics & Genomes 10(6):1645-1660. https://doi.org/10.1007/s11295-014-0786-110.1007/s11295-014-0786-1
  23. Morgulis A, Coulouris G, Raytselis Y, Madden TL, Agarwala R, Schäffer AA (2008) Database indexing for production MegaBLAST searches. Bioinformatics 24(16):1757-1764. https://doi.org/10.1093/bioinformatics/btn32210.1093/bioinformatics/btn322269692118567917
  24. Müller M, Gailing O (2019) Abiotic genetic adaptation in the Fagaceae. Plant Biology 21(5):783-795. https://doi.org/10.1111/plb.1300810.1111/plb.1300831081234
  25. Müller M, Lopez PA, Papageorgiou AC, Tsiripidis I, Gailing O (2019) Indications of genetic admixture in the transition zone between Fagus sylvatica L. and Fagus sylvatica ssp. orientalis Greut. & Burd. Diversity 11(6):90. https://doi.org/10.3390/d1106009010.3390/d11060090
  26. Nei M (1972) Genetic distance between populations. The American Naturalist 106(949):283-292. https://doi.org/10.1086/28277110.1086/282771
  27. Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences 12(4):357-358. https://doi.org/10.1093/bioinformatics/12.4.35710.1093/bioinformatics/12.4.3578902363
  28. Peakall R, Smouse PE (2006) genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6(1):288-295. https://doi.org/10.1111/j.1471-8286.2005.01155.x10.1111/j.1471-8286.2005.01155.x
  29. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics 28(19):2537-2539. https://doi.org/10.1093/bioinformatics/bts46010.1093/bioinformatics/bts460346324522820204
  30. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945-959.10.1093/genetics/155.2.945146109610835412
  31. Rajendra KC, Seifert S, Prinz K, Gailing O, Finkeldey R (2014) Subtle human impacts on neutral genetic diversity and spatial patterns of genetic variation in European beech (Fagus sylvatica). Forest Ecology and Management 319:138-149. https://doi.org/10.1016/j.foreco.2014.02.00310.1016/j.foreco.2014.02.003
  32. Renner SS, Grimm GW, Kapli P, Denk T (2016) Species relationships and divergence times in beeches: new insights from the inclusion of 53 young and old fossils in a birth-death clock model. Philosophical Transactions of the Royal Society B 371(1699):20150135. https://doi.org/10.1098/rstb.2015.013510.1098/rstb.2015.0135492033627325832
  33. Rousset F (2008) genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8(1):103-106. doi: 10.1111/j.1471-8286.2007.01931.x10.1111/j.1471-8286.2007.01931.x21585727
  34. Salehi Shanjani P, Paule L, Khavari-Nejad R, Gömöry D, Sagheb Talebi K (2002) Genetic diversity of Oriental beech (Fagus orientalis Lipsky) forests over the Hyrcanian zone. Forest Genetics 9(4):297-308.
  35. Salehi Shanjani P, Vettori C, Giannini R, Khavari-Nejad RA (2004) Intraspecific variation and geographic patterns of Fagus orientalis Lipsky chloroplast DNA. Silvae Genetica 53(5-6):193-197. https://doi.org/10.1515/sg-2004-003510.1515/sg-2004-0035
  36. Salehi Shanjani P, Vendramin GG, Calagari M (2010) Genetic diversity and differentiation of Fagus orientalis Lipsky in Hyrcanian forests revealed by nuclear and chloroplast microsatellite markers. Conservation Genetics 11(6):2321-2331. https://doi.org/10.1007/s10592-010-0118-410.1007/s10592-010-0118-4
  37. Salehi Shanjani P, Vendramin GG, Calagari M (2011) Altitudinal genetic variations among the Fagus orientalis Lipsky populations in Iran. Iranian Journal of Biotechnology 9(1):11-20.
  38. Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnology 18(2):233-234. https://doi.org/10.1038/7270810.1038/7270810657137
  39. The UniProt Consortium (2017) UniProt: the universal protein knowledgebase. Nucleid Acids Research 45:158-169. https://doi.org/10.1093/nar/gkw109910.1093/nar/gkw1099521057127899622
DOI: https://doi.org/10.2478/sg-2020-0008 | Journal eISSN: 2509-8934 | Journal ISSN: 0037-5349
Language: English
Page range: 55 - 62
Published on: Jul 13, 2020
Published by: Johann Heinrich von Thünen Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2020 Mahboobeh Mohebi Bijarpasi, Markus Müller, Oliver Gailing, published by Johann Heinrich von Thünen Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.