Have a personal or library account? Click to login
Characterization of EST-SSRs for European beech (Fagus sylvatica L.) and their transferability to Fagus orientalis Lipsky, Castanea dentata Bork., and Quercus rubra L. Cover

Characterization of EST-SSRs for European beech (Fagus sylvatica L.) and their transferability to Fagus orientalis Lipsky, Castanea dentata Bork., and Quercus rubra L.

Open Access
|Dec 2018

References

  1. Aldrich PR, Jagtap M, Michler CH, Romeo-Severson J (2003) Amplification of North American red oak microsatellite markers in European white oaks and Chinese chestnut. Silvae Genetica 52(3-4): 176-179 Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. Journal of Molecular Biology 215(3): 403-410. https://doi.org/10.1016/S0022-2836(05)80360-210.1016/S0022-2836(05)80360-2
  2. Barreneche T, Casasoli M, ussell K, Akkak A, Meddour H, Plomion C, Villani F, Kremer A (2004) Comparative mapping between Quercus and Castanea us­ing simple-sequence repeats (SSRs). Theoretical and Applied Genetics 108: 558-566. https://doi.org/10.1007/s00122-003-1462-210.1007/s00122-003-1462-214564395
  3. Brown GR, Kadel III EE, Bassoni DL, Kiehne KL, Temesgen B, van Buijtenen JP, Sewell MM, Marshall KA, Neale DB (2001) Anchored reference loci in loblolly pine (Pinus taeda L.) for integrating pine genomics. Genetics 159: 799-80910.1093/genetics/159.2.799146182111606554
  4. Buiteveld J, Vendramin GG, Leonardi S, Kamer K, Geburek T (2007) Genetic diver­sity and differentiation in European beech (Fagus sylvatica L.) stands varying in management history. Forest Ecology and Management 247: 98-106. https://doi.org/10.1016/j.foreco.2007.04.01810.1016/j.foreco.2007.04.018
  5. Buonaccorsi VP, Kimbrell CA, Lynn EA, Hyde JR (2012) Comparative population genetic analysis of Bocaccio Rockfish Sebastes paucispinis using anonymous and gene-sssociated Simple Sequence Repeat loci. Journal of Heredity 103 (3): 391-399. https://doi.org/10.1093/jhered/ess00210.1093/jhered/ess00222490232
  6. Comps B, Gömöry D, Letouzey J, Thiébaut B, Petit RJ (2001) Diverging trends be­tween heterozygosity and allelic richness during postglacial colonization in the European beech. Genetics 157: 389-39710.1093/genetics/157.1.389146149511139519
  7. Demesure B, Comps B, Petit RJ (1996) Chloroplast DNA phylogeography of the common beech (Fagus sylvatica L.) in Europe. Evolution 50: 2515-2520. https://doi.org/10.1111/j.1558-5646.1996.tb03638.x10.1111/j.1558-5646.1996.tb03638.x28565658
  8. Dounavi A, Netzer F, Celepirovic N, Ivankovic M, Burger J, Figueroa AG, Schön S, Simon J, Cremer E, Fussi B, Konnert M, Rennenberg H (2016) Genetic and physiological differences of European beech provenances (F. sylvatica L.) exposed to drought stress. Forest Ecology and Management 361: 226-236. https://doi.org/10.1016/j.foreco.2015.11.01410.1016/j.foreco.2015.11.014
  9. Durand J, Bodenes C, Chancerel E, Frigerio J-M, Vendramin G, Sebastiani F, Buonamici A, Gailing O, Koelewijn H-P, Villani F, Mattioni C, Cherubini M, Goicoechea PG, Herran A, Ikaran Z, Cabane C, Ueno S, Alberto F, Dumolin P-Y, Guichoux E, de Daruvar A, Kremer A, Plomion C (2010). A fast and cost-effective approach to develop and map EST-SSR markers: oak as a case study. BMC Genomics 11(570): 1-13. https://doi.org/10.1186/1471-2164-11-57010.1186/1471-2164-11-570309171920950475
  10. Ellis JR, Burke JM (2007) EST-SSRs as a resource for population genetic analyses. Heredity 99(2): 125-32. https://doi.org/10.1038/sj.hdy.680100110.1038/sj.hdy.680100117519965
  11. Fang J, Lechowicz M (2006) Climatic limits for the present distribution of beech (Fagus L.) species in the world. Journal of Biogegraphy 33: 1804- 1819. https://doi.org/10.1111/j.1365-2699.2006.01533.x10.1111/j.1365-2699.2006.01533.x
  12. Gailing O, von Wühlisch G (2004) Nuclear markers (AFLPs) and chloroplast mi­crosatellites differ between Fagus sylvatica and F. orientalis. Silvae Genetica 53(3): 105-110. https://doi.org/10.1515/sg-2004-001910.1515/sg-2004-0019
  13. Gailing O, Langenfeld-Heysert R, Polle A, Finkeldey R (2008) Quantitative trait loci affecting stomatal density and growth in a Quercus robur progeny: implications for the adaption to changing environments. Global Change Biol­ogy 14: 1934- 1946. https://doi.org/10.1111/j.1365-2486.2008.01621.x10.1111/j.1365-2486.2008.01621.x
  14. Goudet J (2002) Software Fstat 2.9.3. Department of Ecology & Evolution, Biolo­gy Building, Lausanne University [online]. Available at <https://www2.unil.ch/popgen/softwares/fstat.htm> [cited 04/15/2018]
  15. Guichoux E, Lagache L, Wagner S, Chaumeil P, Leger P, Lepais O, Lepoittevin C, Malausa T, Revardel E, Salin F, Petit RJ (2011) Current trends in microsatellite genotyping. Molecular Ecology Resources 11: 591-611. https://doi.org/10.1111/j.1755-0998.2011.03014.x10.1111/j.1755-0998.2011.03014.x21565126
  16. Harmon M, Lane T, Staton M, Coggeshall MV, Best T, Chen C-C, Liang H, Zem­bower N, Drautz-Moses DI, Hwee YZ, Schuster SC, Schlarbaum SE, Carlson JE, Gailing O (2017) Development of novel genic microsatellite markers from transcriptome sequencing in sugar maple (Acer saccharum Marsh.). BMC Research Notes 10(369): 1-7. https://doi.org/10.1186/s13104-017-2653-210.1186/s13104-017-2653-2554931628789702
  17. Kölling C, Zimmermann L (2007) Die Anfälligkeit der Wälder Deutschlands ge­genüber dem Klimawandel. Klimaschutz 67(6): 259-268
  18. Kubisiak T, Carey D, Burdine C, Koch J (2009) Characterization of ten EST-based polymorphic SSR loci isolated from American beech, Fagus grandifolia Ehrh. Permanent Genetic Resources Note added to Molecular Ecology Resources Volume: 1-8. https://doi.org/10.1111/j.1755-0998.2009.02759.x10.1111/j.1755-0998.2009.02759.x21564933
  19. Lalagüe H, Csilléry K, Oddou-Muratorio S, Safrana J, de Quattro C, Fady B, González-Martínez SC, Vendramin GG (2014) Nucleotide diversity and link­age disequilibrium at 58 stress response and phenology candidate genes in a European beech (Fagus sylvatica L.) population from southeastern France. Tree Genetics & Genomes 10: 15-26. https://doi.org/10.1007/s11295-013-0658-010.1007/s11295-013-0658-0
  20. Lesur I, Bechade A, Lalanne C, Klopp C, Noirot C, Leplé J-C, Kremer A, Plomion C, le Provost G (2015) A unigene set for European beech (Fagus sylvatica L.) and its use to decipher the molecular mechanisms involved in dormancy regulation. Molecular Ecology Resources 15: 1-13. https://doi.org/10.1111/1755-0998.1237310.1111/1755-0998.1237325594128
  21. Liesebach H (2012) Genotypisierung mit nuklearen Mikrosatellitenmarkern - Möglichkeiten der Daten-auswertung am Beispiel von Buchenpopula­tionen (Fagus sylvatica L.) aus einem Herkunftsversuch. Applied Agricultural and Forestry Research 4:221-236.
  22. Mishra B, Gupta DK, Pfenninger M, Hickler T, Langer E, Nam B, Paule J, Sharma R, Ulaszewski B, Warmbier J, Burczyk J, Thines M (2018) A reference genome of the European beech (Fagus sylvatica L.). GigaScience 7: 1-8. https://doi.org/10.1093/gigascience/giy06310.1093/gigascience/giy063601418229893845
  23. Müller M, Seifert S, Finkeldey R (2015) Identification of SNPs in candidate genes potentially involved in bud burst in European beech (Fagus sylvatica L.) Silvae Genetica 64: 1-20. https://doi.org/10.1515/sg-2015-000110.1515/sg-2015-0001
  24. Müller M, Seifert S, Lübbe T, Leuschner C, Finkeldey R (2017) De novo transcrip­tome assembly and analysis of differential gene expression in response to drought in European beech. PLoS one 12(9): 1-20. https://doi.org/10.1371/journal.pone.018416710.1371/journal.pone.0184167558480328873454
  25. Paffetti D, Travaglini D, Buonamici A, Nocentini S, Vendramin GG, Giannini R, Vet­tori C (2012) The influence of forest management on beech (Fagus sylvatica L.) stand structure and genetic diversity. Forest Ecology and Management 284: 34-44. https://doi.org/10.1016/j.foreco.2012.07.02610.1016/j.foreco.2012.07.026
  26. Pastorelli R, Smulders MJM, van’t West-Ende WPC, Vosman B, Giannini R, Vettori C, Vendramin GG (2003) Characterization of microsatellite markers in Fagus sylvatica L. and Fagus orientalis Lipsky. Molecular Ecology Notes 3: 76-78. https://doi.org/10.1046/j.1471-8286.2003.00355.x10.1046/j.1471-8286.2003.00355.x
  27. Paule L (1995) Gene conservation in European beech (Fagus sylvatica L.). Forest Genetics 2(3): 161-170 Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6(1): 288-295. https://doi.org/10.1111/j.1471-8286.2005.01155.x10.1111/j.1471-8286.2005.01155.x
  28. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28(19): 2537-2539. https://doi.org/10.1093/bioinformatics/bts46010.1093/bioinformatics/bts460346324522820204
  29. Rajendra KC, Seifert S, Prinz K, Gailing O, Finkeldey R (2014) Subtle human im­pacts on neutral genetic diversity and spatial patterns of genetic variation in European beech (Fagus sylvatica). Forest Ecology and Management 319: 138-149. https://doi.org/10.1016/j.foreco.2014.02.00310.1016/j.foreco.2014.02.003
  30. Rousset F (2008) Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Molecular Ecology Resources 8: 103-106. https://doi.org/10.1111/j.1471-8286.2007.01931.x10.1111/j.1471-8286.2007.01931.x21585727
  31. Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnology 18(2): 233-234. https://doi.org/10.1038/7270810.1038/7270810657137
  32. Shanjani PS, Vendramin GG, Calagari M (2010) Genetic diversity and differentia­tion of Fagus orientalis Lipsky in Hyrcanian forests revealed by nuclear and chloroplast microsatellite markers. Conservation Genetics 11(6): 2321-2331. https://doi.org/10.1007/s10592-010-0118-410.1007/s10592-010-0118-4
  33. Steinkellner H, Lexer C, Turetschek E, Glössl J (1997) Conservation of (GA)n mi­crosatellite loci between Quercus species. Molecular Ecology 6: 1189-1194. https://doi.org/10.1046/j.1365-294X.1997.00288.x10.1046/j.1365-294X.1997.00288.x
  34. Tanaka K, Tsumura Y, Nakamura T (1999) Development and polymorphism of mi­crosatellite markers for Fagus crenata and the closely related species, F. japonica. Theoretical and Applied Genetics 99: 11-15 The Uniprot Consortium (2017) UniProt: the universal protein knowledgebase. Nucleid Acids Research 45: 158- 169. https://doi.org/10.1093/nar/gkw109910.1093/nar/gkw1099521057127899622
  35. Ueno S, Taguchi Y, Tomaru N, Tsumura Y (2009) Development of EST-SSR markers from an inner bark cDNA library of Fagus crenata (Fagaceae). Conservation Genetics 10: 1477-1485. https://doi.org/10.1007/s10592-008-9764-110.1007/s10592-008-9764-1
  36. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: Software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4: 535-538. https://doi.org/10.1111/j.1471-8286.2004.00684.x10.1111/j.1471-8286.2004.00684.x
  37. Vornam B, Decarli N, Gailing O (2004) Spatial distribution of genetic variation in a natural beech stand (Fagus sylvatica L.) based on microsatellite markers. Conversations Genetics 5: 561-570. https://doi.org/10.1023/b:coge.0000041025.82917.ac .10.1023/b:coge.0000041025.82917.ac
DOI: https://doi.org/10.2478/sg-2018-0019 | Journal eISSN: 2509-8934 | Journal ISSN: 0037-5349
Language: English
Page range: 127 - 132
Published on: Dec 31, 2018
Published by: Johann Heinrich von Thünen Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2018 Katrin Burger, Markus Müller, Oliver Gailing, published by Johann Heinrich von Thünen Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.