Have a personal or library account? Click to login
Experimental evidence for selection against hybrids between two interfertile red oak species Cover

Experimental evidence for selection against hybrids between two interfertile red oak species

By: Oliver Gailing and  Ruhua Zhang  
Open Access
|Dec 2018

References

  1. Abadie P, G Roussel, B Dencausse, C Bonnet, E Bertocchi, JM Louvet, A Kremer and P Garnier-Gere (2012) Strength, diversity and plasticity of postmating reproductive barriers between two hybridizing oak species (Quercus robur L. and Quercus petraea (Matt) Liebl.). Journal of Evolutionary Biology 25:157- 173. https://doi.org/10.1111/j.1420-9101.2011.02414.x10.1111/j.1420-9101.2011.02414.x22092648
  2. Abraham ST, DN Zaya, WD Koenig and MV Ashley (2011) Interspecific and intra­specific pollination patterns of valley oak, Quercus lobata, in a mixed stand in coastal central California. International Journal of Plant Sciences 172:691- 699. https://doi.org/10.1086/65964610.1086/659646
  3. Abrams MD (1990) Adaptations and responses to drought in Quercus species of North America. Tree Physiology 7:227-238. https://doi.org/10.1093/treephys/7.1-2-3-4.22710.1093/treephys/7.1-2-3-4.22714972920
  4. Abrams MD (1992) Fire and the development of oak forests in eastern North America, oak distribution reflects a variety of ecological paths and distur­bance conditions. Bioscience 42:346-353. https://doi.org/10.2307/131178110.2307/1311781
  5. Cottam WP, JM Tucker and FS Santamour Jr. (1982) Oak hybridization at the Uni­versity of Utah. State Arboretum of Utah, University of Utah.
  6. Curtu AL, O Gailing and R Finkeldey (2007) Evidence for hybridization and intro­gression within a species-rich oak (Quercus spp.) community. BMC Evolu­tionary Biology 7:218. Artn 218. https://doi.org/10.1186/1471-2148-7-21810.1186/1471-2148-7-218224492317996115
  7. Curtu AL, O Gailing and R Finkeldey (2009) Patterns of contemporary hybridiza­tion inferred from paternity analysis in a four-oak-species forest. BMC Evolu­tionary Biology 9:284. Artn 284. https://doi.org/10.1186/1471-2148-9-28410.1186/1471-2148-9-284279576319968862
  8. de Heredia UL, M Valbuena-Carabana, M Cordoba and L Gil (2009) Variation components in leaf morphology of recruits of two hybridising oaks Q. pet­raea (Matt.) Liebl. and Q. pyrenaica Willd. at small spatial scale. European Journal of Forest Research 128:543-554. https://doi.org/10.1007/s10342-009-0302-610.1007/s10342-009-0302-6
  9. Dodd RS, and Z Afzal-Rafii (2004) Selection and dispersal in a multispecies oak hybrid zone. Evolution 58:261-269. https://doi.org/10.1111/j.0014-3820.2004.tb01643.x10.1111/j.0014-3820.2004.tb01643.x
  10. Durand J, C Bodénès, E Chancerel, J-M Frigero, GG Vendramin, F Sebastiani, A Buonamici, O Gailing, H-P Koelewijn, F Villani, C Mattioni, M Cherubini, PG Goicoechea, A Herran, Z Ikaran, C Cabane, S Ueno, A de Daruvar, A Kremer and C Plomion (2010) A fast and cost-effective approach to develop and map EST-SSR markers: oak as a case study. BMC Genomics 11:570. https://doi.org/10.1186/1471-2164-11-57010.1186/1471-2164-11-570309171920950475
  11. Gailing O (2013) Differences in growth, survival and phenology in Quercus rubra and Q. ellipsoidalis seedlings. Dendrobiology 70:71-79. https://doi.org/10.12657/denbio.070.00810.12657/denbio.070.008
  12. Gailing O, S Kostick, O Caré and S Khodwekar (2018) Leaf morphological and ge­netic variation between Quercus rubra and Quercus ellipsoidalis: comparison of sympatric and parapatric populations. Annals of Forest Research 61:81- 94. https://doi.org/10.15287/afr.2018.102010.15287/afr.2018.1020
  13. Kang MY, M Fokar, H Abdelmageed and RD Allen (2011) Arabidopsis SAP5 func­tions as a positive regulator of stress responses and exhibits E3 ubiquitin li­gase activity. Plant Molecular Biology 75:451-466. https://doi.org/10.1007/s11103-011-9748-210.1007/s11103-011-9748-221293909
  14. Khodwekar S, and O Gailing (2017) Evidence for environment-dependent intro­gression of adaptive genes between two red oak species with different drought adaptations. American Journal of Botany 104:1088-1098. https://doi.org/10.3732/ajb.170006010.3732/ajb.170006028724591
  15. Kleinschmit J, and JRG Kleinschmit (2000) Quercus robur - Q. petraea: a critical re­view of the species concept. Glasnik Za sumske Pokuse 37:441-452.
  16. Lepais O, G Roussel, F Hubert, A Kremer and S Gerber (2013) Strength and vari­ability of postmating reproductive isolating barriers between four Europe­an white oak species. Tree Genetics & Genomes 9:841-853. https://doi.org/10.1007/s11295-013-0602-310.1007/s11295-013-0602-3
  17. Lexer C, A Kremer and RJ Petit (2006) Shared alleles in sympatric oaks: recurrent gene flow is a more parsimonious explanation than ancestral polymor­phism. Molecular Ecology 15:2007-2012. https://doi.org/10.1111/j.1365-294x.2006.02896.x10.1111/j.1365-294x.2006.02896.x
  18. Lind-Riehl J, and O Gailing (2017) Adaptive variation and introgression of a CON­STANS-like gene in North American red oaks. Forests 8:3. https://doi.org/10.3390/f801000310.3390/f8010003
  19. Lind-Riehl JF, AR Sullivan and O Gailing (2014) Evidence for selection on a CON­STANS-like gene between two red oak species. Annals of Botany 113:967- 975. https://doi.org/10.1093/aob/mcu01910.1093/aob/mcu019399763724615344
  20. Lind J, and O Gailing (2013) Genetic structure of Quercus rubra L. and Q. ellipsoi­dalis E. J. Hill populations at gene-based EST-SSR and nuclear SSR markers. Tree Genetics & Genomes 9:707-722. https://doi.org/10.1007/s11295-012-0586-410.1007/s11295-012-0586-4
  21. Olrik DC, and ED Kjaer (2007) The reproductive success of a Quercus petraea x Q. robur F1-hybrid in back-crossing situations. Annals of Forest Science 64:37- 45. https://doi.org/10.1051/forest:200608610.1051/forest:2006086
  22. Owusu SA, AR Sullivan, JA Weber, AL Hipp and O Gailing (2015) Taxonomic rela­tionships and gene flow in four North American Quercus species. Systemat­ic Botany 40:510. https://doi.org/10.1600/036364415x68875410.1600/036364415x688754
  23. Paul A, and S Kumar (2015) An A20/AN1-zinc-finger domain containing protein gene in tea is differentially expressed during winter dormancy and in re­sponse to abiotic stress and plant growth regulators. Plant Gene 1:1-7. https://doi.org/10.1016/j.plgene.2014.12.00310.1016/j.plgene.2014.12.003
  24. Peakall R, and PE Smouse (2012) GenAlEx 6.5: genetic analysis in Excel. Popula­tion genetic software for teaching and research-an update. Bioinformatics 28:2537-2539. https://doi.org/10.1093/bioinformatics/bts46010.1093/bioinformatics/bts460346324522820204
  25. Pritchard JK, M Stephens and P Donnelly (2000) Inference of population struc­ture using multilocus genotype data. Genetics 155:945-959. Rieseberg LH, and JH Willis (2007) Plant Speciation. Science 317:910-914. https://doi.org/10.1126/science.113772910.1126/.1137729
  26. Sander IL (1990) Quercus rubra L., pp. 727-733 in Silvics of North America. U.S. Department of Agriculture, Forest Service, Washington DC. Steinhoff S (1993) Results of species hybridization with Quercus robur L. and Quercus petraea (Matt) Liebl. Annales des Sciences Forestières 50:137s-143s. https://doi.org/10.1051/forest:1993071310.1051/forest:19930713
  27. Zhang R, AL Hipp and O Gailing (2015) Sharing of chloroplast haplotypes among red oak species suggests interspecific gene flow between neighbor­ing populations. Botany 93:691-700. https://doi.org/10.1139/cjb-2014-026110.1139/cjb-2014-0261
DOI: https://doi.org/10.2478/sg-2018-0015 | Journal eISSN: 2509-8934 | Journal ISSN: 0037-5349
Language: English
Page range: 106 - 110
Published on: Dec 31, 2018
Published by: Johann Heinrich von Thünen Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2018 Oliver Gailing, Ruhua Zhang, published by Johann Heinrich von Thünen Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.