Have a personal or library account? Click to login
A regression approach to estimate the relative roles of pollen- versus seed-mediated gene flow under an isolation by distance model Cover

A regression approach to estimate the relative roles of pollen- versus seed-mediated gene flow under an isolation by distance model

Open Access
|Jun 2018

References

  1. M, Austerlitz F, Elzinga J A, Teixeira S, Goudet J, Bernasconi G (2011) Fine-scale spatial genetic structure and gene dispersal in Silene latifolia. He­redity 106: 13-24. https://doi.org/10.1038/hdy.2010.38 10.1038/hdy.2010.38318385920389310
  2. Charlesworth B (1998) Measures of divergence between populations and the ef­fect of forces that reduce variability. Mol Biol Evol 15: 538-543. https://doi.org/10.1093/oxfordjournals.molbev.a025953 10.1093/oxfordjournals.molbev.a0259539580982
  3. Cockerham CC (1973) Analysis of gene frequencies. Genetics 74: 679-700. Crawford T J (1984) The estimation of neighbourhood parameters for plant pop­ulations. Heredity 52(2): 273-283. https://doi.org/10.1038/hdy.1984.29 10.1038/hdy.1984.29
  4. Dainou K, Bizoux J, Doucet J, Mahy G, Hardy O J, Heuert M (2010) Forest refugia revisited: nSSRs and cpDNA sequences support historical isolation in a wide-spread African tree with high colonization capacity, Milicia excelsa (Moraceae). Mol Ecol 19: 4462-4477. https://doi.org/10.1111/j.1365-294x.2010.04831.x 10.1111/j.1365-294x.2010.04831.x
  5. Ducousso A, Michaud H, Lumaret R (1993) Reproduction and gene flow in the genus Quercus L. Ann Sci Forest 50(11): 91-106. https://doi.org/10.1051/forest:19930708 10.1051/forest:19930708
  6. Dutech C, Sork V L, Irwin A J, Smouse P E, Davis F W (2005) Gene flow and fine-scale genetic structure in a wind-pollinated tree species, Quercus lobata (Fagaceae). Am J Bot 92(2): 252-261. https://doi.org/10.3732/ajb.92.2.252 10.3732/ajb.92.2.25221652402
  7. Ennos, R A (1994) Estimating the relative rates of pollen and seed migration among plant populations. Heredity 72: 250-259. https://doi.org/10.1038/hdy.1994.35 10.1038/hdy.1994.35
  8. Epperson B K, Mcrae B H, Scribner K, Cushman S A, Rosenberg M S, Fortin M J, James P M, Murphy M, Manel S, Legendre P, Dale M R (2010) Utility of com­puter simulations in landscape genetics. Mol Ecol 19: 3549-3564. https://doi.org/10.1111/j.1365-294x.2010.04678.x 10.1111/j.1365-294x.2010.04678.x
  9. Epperson, B K (1993) Spatial and spatial-time correlations in systems of subpop­ulations with genetic drift and migration. Genetics 133: 711-727. 10.1093/genetics/133.3.71112053548454211
  10. Epperson, B K (2007) Plant dispersal, neighbourhood size and isolation by dis­tance. Mol Ecol 16: 3854-3865. https://doi.org/10.1111/j.1365-294x.2007.03434.x 10.1111/j.1365-294x.2007.03434.x
  11. Gerlach G, Jueterbock A, Kraemer P, Deppermann J, Harmand P (2010) Calcula­tions of population differentiation based on GST and D: Forget GST but not all of statistics! Mol Ecol 19(18): 3845-3852. 10.1111/j.1365-294X.2010.04784.x20735737
  12. Grivet D, Deguilloux M F, Petit R J, Sork V L (2006) Contrasting patterns of histori­cal colonization in white oaks (Quercus spp.) in California and Europe. Mol Ecol 15: 4085-4093. https://doi.org/10.1111/j.1365-294x.2006.03083.x 10.1111/j.1365-294x.2006.03083.x
  13. Grivet D, Sork V L, Westfall R D, Davis F W (2008) Conserving the evolutionary potential of California valley oak (Quercus lobata Née): a multivariate genet­ic approach to conservation planning. Mol Ecol 17: 139-156. https://doi.org/10.1111/j.1365-294x.2007.03498.x 10.1111/j.1365-294x.2007.03498.x
  14. Gugger P F, Ikegami M, Sork V L (2013a) Data from: Influence of late Quaternary climate change on present patterns of genetic variation in valley oak, Quer­cus lobata Née. Dryad Digital Repository. http://dx.doi.org/10.5061/dryad.g645d 10.5061/dryad.g645d
  15. Gugger P F, Ikegami M, Sork V L (2013b) Influence of late Quaternary climate change on present patterns of genetic variation in valley oak, Quercus loba­ta Née. Mol Ecol 22(13): 3598-3612. https://doi.org/10.1111/mec.12317 10.1111/mec.1231723802553
  16. Hedrick P W (1999) Perspective: highly variable loci and their interpretation in evolution and conservation. Evolution 53: 313-318. https://doi.org/10.1111/j.1558-5646.1999.tb03767.x 10.1111/j.1558-5646.1999.tb03767.x28565409
  17. Heller R, Siegismund H R (2009) Relationship between three measures of genet­ic differentiation GST, DEST and G’ST: How wrong have we been? Mol Ecol 18(10): 2080-2083. https://doi.org/10.1111/j.1365-294x.2009.04185.x 10.1111/j.1365-294X.2009.04185.x19645078
  18. Holsinger K E, Weir B S (2009) Genetics in geographically structured populations: defining, estimating and interpreting FST. Nat Rev Genet 10:639-650. https://doi.org/10.1038/nrg2611 10.1038/nrg2611468748619687804
  19. Hu X, Ennos R A (1997) On estimation of the ratio of pollen to seed flow among plant populations. Heredity 79: 541-552. https://doi.org/10.1038/sj.hdy.6882080 10.1038/sj.hdy.6882080
  20. Hu X, Ennos R A (1999) Impacts of seed and pollen flow on population genetic structure for plant genomes with three contrasting modes of inheritance. Genetics 152: 441-450. 10.1093/genetics/152.1.441146059210224273
  21. Jakobsson M, Edge M D, Rosenberg N A (2013) The relationship between FST and the frequency, https://doi.org/10.1534/genetics.112.144758 10.1534/genetics.112.144758356774023172852
  22. Jenkins D G, Carey M, Czerniewska J, Fletcher J, Hether T, Jones A, Knight S, Knox J, Long T, Mannino M, McGuire M, Riffle A, Segelsky S, Shappell L, Sterner A, Strickler T, Tursi R (2010) A meta-analysis of isolation by distance: relic or ref­erence standard for landscape genetics? Ecography 33: 315-320. https://doi.org/10.1111/j.1600-0587.2010.06285.x 10.1111/j.1600-0587.2010.06285.x
  23. Jost L (2008) GST and its relatives do not measure differentiation. Molecular Ecology 17(18): 4015-4026. https://doi.org/10.1111/j.1365-294x.2008.03887.x 10.1111/j.1365-294x.2008.03887.x19238703
  24. Jost L, Archer F, Flanagan S, Gaggiotti O, Hoban S, Latch E (2018) Differentiation measures for conservation genetics. Evolutionary Applications 1-10. https://doi.org/10.1111/eva.12590 10.1111/eva.12590605018330026802
  25. Kimura M (1953) “Stepping stone” model of population. Annu Rep Natio Inst Genet. 3: 62-63. Kimura M, Weiss G H (1964) The stepping stone model of population structure and the decrease of genetic correlation with distance. Genetics 49: 561-576. 10.1093/genetics/49.4.561
  26. Leblois R, Beeravolu C R, Rousset F (2012) IBDSim version 2.0 User manual.
  27. Leblois R, Estoup A, Rousset F (2003) Influence of mutational and sampling fac­tors on the estimation of demographic parameters in a “continuous” popu­lation under isolation by distance. Mol Biol Evol 20(4): 491-502. https://doi.org/10.1093/molbev/msg034 10.1093/molbev/msg03412654930
  28. Leblois R, Estoup A, Rousset F (2008) IBDSim: a computer program to simulate genotypic data under isolation by distance. Mol Ecol Res 9(1): 107-109. https://doi.org/10.1111/j.1755-0998.2008.02417.x 10.1111/j.1755-0998.2008.02417.x21564573
  29. Leblois R, Rousset F, Estoup A (2004) Influence of spatial and temporal heteroge­neities on the estimation of demographic parameters in a continuous pop­ulation using individual microsatellite data. Genetics 166: 1081-1092. https://doi.org/10.1534/genetics.166.2.1081 10.1534/genetics.166.2.1081147072615020488
  30. Leng L, Zhang D X (2013) Time matters: Some interesting properties of the pop­ulation differentiation measures GST and D overlooked in the equilibrium perspective. Journal of Systematics and Evolution 51(1): 44-60. https://doi.org/10.1111/j.1759-6831.2012.00231.x 10.1111/j.1759-6831.2012.00231.x
  31. Luximon N, Petit E J, Broquet T (2014) Performance of individual vs. group sam­pling for inferring dispersal under isolation-by-distance. Mol Ecol Res 14(4): 745-752. https://doi.org/10.1111/1755-0998.12224 10.1111/1755-0998.1222424400787
  32. Meirmans P G, Hedrick P W (2011) Assessing population structure: FST and relat­ed measures. Molecular Ecology Resources 11(1): 5-18. https://doi.org/10.1111/j.1755-0998.2010.02927.x 10.1111/j.1755-0998.2010.02927.x21429096
  33. Ndiade-Bourobou D, Hardy O J, Favreau B, Moussavou H, Nzengue E, Mignot A, Bouvet J M (2010) Long-distance seed and pollen dispersal inferred from spatial genetic structure in the very low-density rainforest tree, Baillonella toxisperma Pierre, in Central Africa. Mol Ecol 19: 4949-4962. https://doi.org/10.1111/j.1365-294x.2010.04864.x 10.1111/j.1365-294x.2010.04864.x
  34. Neigel J E (1997) A comparison of alternative strategies for estimating gene flow from genetic markers. Annu Rev Ecol Evol Syst 28: 105-128. https://doi.org/10.1146/annurev.ecolsys.28.1.105 10.1146/annurev.ecolsys.28.1.105
  35. Nielsen R, Slatkin M (2013) An introduction to Population Genetics. Theory and Applications. Sinauer Associates, Inc. Publishers. Sunderland, Massachusetts U.S.A. https://doi.org/10.1086/673812 10.1086/673812
  36. Oddou-Muratorio S, Petit R J, Le Guerroue B, Guesnet D, Demesure B (2001) Pol­len- versus seed-mediated gene flow in a scattered forest tree species. Evo­lution 55(6): 1123-1135. https://doi.org/10.1554/0014-3820(2001)055[1123:pvsmgf]2.0.co;2 10.1554/0014-3820(2001)055[1123:pvsmgf]2.0.co;2
  37. Rousset F (1997) Genetic differentiation and estimation of gene flow from F-sta­tistics under isolation by distance. Genetics 145: 1219-1228. 10.1093/genetics/145.4.1219
  38. Rousset F (2008) Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Res 8: 103-106. https://doi.org/10.1111/j.1471-8286.2007.01931.x 10.1111/j.1471-8286.2007.01931.x
  39. Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236: 787-792. https://doi.org/10.1126/science.3576198 10.1126/.3576198
  40. Sork V L, Davis F W, Westfall R, Flint A, Ikegami M, Wang H, Grivet D (2010) Gene movement and genetic association with regional climate gradients in Cali­fornia valley oak (Quercus lobata Née) in the face of climate change. Mol Ecol 19: 3806-3823. https://doi.org/10.1111/j.1365-294x.2010.04726.x 10.1111/j.1365-294x.2010.04726.x
  41. Sork V L, Nason J, Campbell D R, Fernandez J F (1999) Landscape approaches to historical and contemporary gene flow in plants. Trends Ecol Evol 14(6): 219-224. https://doi.org/10.1016/s0169-5347(98)01585-7 10.1016/s0169-5347(98)01585-7
  42. Tero N, Aspi J, Siikamäki P, Jäkäläniemi A (2005) Local genetic population struc­ture in an endangered plant species, Silene tatarica (Caryophyllaceae). He­redity 94: 478-487. https://doi.org/10.1038/sj.hdy.6800642 10.1038/sj.hdy.6800642
  43. van Strien M J, Holderegger R, Van Heck H J (2015) Isolation-by-distance in land­scapes: considerations for landscape genetics. Heredity 114: 27-37. https://doi.org/10.1038/hdy.2014.62 10.1038/hdy.2014.62481560125052412
  44. Weiss G H, Kimura M (1965) A mathematical analysis of the stepping stone mod­el of genetic correlation. Appl Probab 2: 129-149. https://doi.org/10.2307/3211879 10.2307/3211879
  45. Whitlock M C (2011). G’ST and D do not replace FST. Molecular Ecology 20(6): 1083-1091. https://doi.org/10.1111/j.1365-294x.2010.04996.x 10.1111/j.1365-294x.2010.04996.x21375616
  46. Whitlock M C, McCauley D E (1999) Indirect measures of gene flow and migra­tion: FST ≠ 1/(4Nm+1). Heredity 82: 117-125. https://doi.org/10.1038/sj.hdy.6884960 10.1038/sj.hdy.688496010098262
  47. Wright S (1943) Isolation by distance. Genetics 28: 114-138. 10.1093/genetics/28.2.114120919617247074
  48. Wright S (1946) Isolation by distance under diverse systems of mating. Genetics 31: 39-59. 10.1093/genetics/31.1.39120931521009706
  49. Wright S (1969) Evolution and the genetics of population Vol. 2 The theory of gene frequencies. University of Chicago Press, Chicago. https://doi.org/10.1126/science.168.3932.722 10.1126/.168.3932.722
  50. Wright, S (1951) The genetical structure of populations. Annals of Eugenics 15: 323-354. https://doi.org/10.1111/j.1469-1809.1949.tb02451.x10.1111/j.1469-1809.1949.tb02451.x24540312
DOI: https://doi.org/10.2478/sg-2018-0006 | Journal eISSN: 2509-8934 | Journal ISSN: 0037-5349
Language: English
Page range: 41 - 50
Published on: Jun 28, 2018
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2018 M. E. Barrandeguy, M. V. García, published by Johann Heinrich von Thünen Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.