References
- Ali, N. S., Shibghatullah, A. S. B., Alhilali, A. H., Al-Khammasi, S., Kadhim, M. F., & Fatlawi, H. K. (2020). A comparative analysis and performance evaluation of web application protection techniques against injection attacks. International Journal of Mobile Communications, 18(2), 196–228. https://doi.org/10.1504/IJMC.2020.105855
- Kejiou, A., & Bekaroo, G. (2022). A review and comparative analysis of vulnerability scanning tools for wireless LANs. In 2022 3rd International Conference on Next Generation Computing Applications (NextComp) (pp. 1-8). IEEE. https://doi.org/10.1109/NextComp55567.2022.9932245
- Lamrani Alaoui, R., & Nfaoui, E. H. (2022). Deep learning for vulnerability and attack detection on web applications: A systematic literature review. Future Internet, 14(4), 118. https://doi.org/10.3390/fi14040118
- N. S. Ali, “Investigation framework of web applications vulnerabilities, attacks and protection techniques in structured query language injection attacks,” Int. J. Wireless Mobile Comput., vol. 15, no. 2, pp. 103-122, 2018, DOI:10.1504/IJWMC.2018.091137
- F. Alaca and P. C. Van Oorschot, “Comparative analysis and framework evaluating web single sign-on systems,” ACM Comput. Surv. (CSUR), vol. 53, no. 5, Article 112, 2020, doi: 10.1145/3409452.
- P. Yeng, S. Wolthusen, and B. Yang, “Comparative analysis of software development methodologies for security requirement analysis: Towards healthcare security practice,” 13th Int. Conf. Inf. Syst., Sofia, Bulgaria, Mar. 2020, DOI:10.33965/is2020_202006L009
- Hamza, Z. A., & Hammad, M. (2020). Testing approaches for web and mobile applications: An overview. International Journal of Computer and Digital Systems, 9(4), 13. https://doi.org/10.12785/IJCDS/090413
- Aslan, Ö., Aktuğ, S. S., Ozkan-Okay, M., Yilmaz, A. A., & Akin, E. (2023). A comprehensive review of cybersecurity vulnerabilities, threats, attacks, and solutions. Electronics, 12(6). https://doi.org/10.3390/electronics12061333
- Yohanandhan, R. V., Elavarasan, R. M., Manoharan, P., & Mihet-Popa, L. (2020). Cyber-physical power system (CPPS): A review on modeling, simulation, and analysis with cybersecurity applications. IEEE Access, 8. https://doi.org/10.1109/ACCESS.2020.3016826
- Ahmad, W., Rasool, A., Javed, A. R., Baker, T., & Jalil, Z. (2021). Cybersecurity in IoT-based cloud computing: A comprehensive survey. Electronics, 11(1). https://doi.org/10.3390/electronics11010016
- Besimi, A., & Shehu, V. (2020). Technology: COVID-19 and the ‘new-normal’ lifestyle vs. security challenges. SEEU Review, 15(1), 71. https://doi.org/10.2478/seeur-2020-0005
- M. Alhamed and M. M. Hafizur Rahman, “A Systematic Literature Review on Penetration Testing in Networks: Future Research Directions,” Appl. Sci., vol. 13, no. 12, p. 6986, Jun. 2023, doi: 10.3390/app13126986.
- A. Tundis, W. Mazurczyk, and M. Mühlhäuser, “A review of network vulnerabilities scanning tools: Types, capabilities, and functioning,” ARES ‘18: Proceedings of the 13th International Conference on Availability, Reliability and Security, vol. 1, pp. 1-10, Aug. 2018, doi https://doi.org/10.1145/3230833.3233287
- Khalid, M. N., Iqbal, M., Rasheed, K., & Abid, M. M. (2020). Web Vulnerability Finder (WVF): Automated black-box web vulnerability scanner. Journal of Information Technology and Computer Science, 2020(4), 38–46. https://doi.org/10.5815/ijitcs.2020.04.05
- Systematic Literature Review: Security Gap Detection on Websites Using OWASP ZAP.” Brilliance: Research of Artificial Intelligence, vol. 4, no. 1, May 2024. h https://doi.org/10.47709/brilliance.v4i1.4227
- Y. Chen, A. E. Santosa, A. Sharma, and D. Lo, “Automated identification of libraries from vulnerability data,” ICSE-SEIP ‘20: Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering: Software Engineering in Practice, pp. 90–99, Sep. https://dl.acm.org/doi/10.1145/3377813.3381360
- R. W. Scholz, R. Czichos, P. Parycek, and T. J. Lampoltshammer, “Organizational vulnerability of digital threats: A first validation of an assessment method,” European Journal of Operational Research, 2019. https://doi.org/10.1016/j.ejor.2019.09.020
- Mi, F., Wang, Z., Zhao, C., Guo, J., Ahmed, F., & Khan, L. (2021). VSCL: Automating vulnerability detection in smart contracts with deep learning. In 2021 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). IEEE. https://doi.org/10.1109/ICBC51069.2021.9461050
- Chancusi, A., Diestra, P., & Nicolalde, D. (2021). Vulnerability analysis of the exposed public IPs in a higher education institution. In ICCNS ‘20: Proceedings of the 2020 10th International Conference on Communication and Network Security (pp. 83–90). https://doi.org/10.1145/3442520.3442523
- Rathi, S. C., Misra, S., Colomo-Palacios, R., Adarsh, R., Neti, L. B. M., & Kumar, L. (2023). Empirical evaluation of the performance of data sampling and feature selection techniques for software fault prediction. Expert Systems with Applications. https://doi.org/10.1016/j.eswa.2023.119806
- Li, X., Wang, L., Xin, Y., Yang, Y., & Chen, Y. (2020). Automated vulnerability detection in source code using minimum intermediate representation learning. Applied Sciences, 10(5), 1692. https://doi.org/10.3390/app10051692
- Jorepalli, S. (2022). Trends in threat vulnerability management: Advanced techniques for proactive network security. International Journal on Recent and Innovation Trends in Computing and Communication, 10(10), 218. http://www.ijritcc.org
- Alqarni, M., & Azim, A. (2022). Low level source code vulnerability detection using advanced BERT language model. 35th Canadian Conference on Artificial Intelligence. https://www.researchgate.net/publication/363018292_Low_Level_Source_Code_Vulnerability_Detection_Using_Advanced_BERT_Language_Model
- Arifi, D., & Arifi, B. (2020). Cybercrime: A challenge to law enforcement. SEEU Review, 15(2), 42. https://doi.org/10.2478/seeur-2020-0016
- Fetahi, E., Hamiti, M., Susuri, A., Zenuni, X., & Ajdari, J. (2024). Integrating handcrafted features with machine learning for hate speech detection in Albanian social media. SEEU Review, 19(2), 80. https://doi.org/10.2478/seeur-2024-0025
- A. W. Ayeni, “Empirics of standard deviation,” Research Presentation, Covenant Univ., May 2014, DOI:10.13140/2.1.1444.6729.
- Przystupa, K., Kolodiy, Z., Yatsyshyn, S., Majewski, J., Khoma, Y., Petrovska, I., Lasarenko, S., & Hut, T. (2023). Standard deviation in the simulation of statistical measurements. Metrology and Measurement Systems. https://doi.org/10.24425/mms.2023.144403
- Markevych, M., & Dawson, M. (2023). A review of enhancing intrusion detection systems for cybersecurity using artificial intelligence (AI). Knowledge-Based Organization, 29(3). https://doi.org/10.2478/kbo-2023-0072
- Luo, F., Jiang, Y., Zhang, Z., Ren, Y., & Hou, S. (2021). Threat analysis and risk assessment for connected vehicles: A survey. Security and Communication Networks, 2021, Article 1263820. https://doi.org/10.1155/2021/1263820
- Moore, E. L., Fulton, S. P., Mancuso, R. A., Amador, T. K., & Likarish, D. M. (2021). A layered model for building cyber defense training capacity. In Information Security Education for Cyber Resilience (pp. 64–80) https://link.springer.com/chapter/10.1007/978-3-030-80865-5_5
- Priyawati, D., Rokhmah, S., & Utomo, I. C. (2022). Website vulnerability testing and analysis of website application using OWASP. International Journal of Computer and Information System (IJCIS), 3(3). http://www.ijcis.net/index.php/ijcis/article/view/90