Have a personal or library account? Click to login
Sentiment Analysis Using the Vader Model for Assessing Company Services Based on Posts on Social Media Cover

Sentiment Analysis Using the Vader Model for Assessing Company Services Based on Posts on Social Media

Open Access
|Dec 2023

References

  1. A. Amin, I. Hossain, A. Akther and K. M. Alam. (2019). Bengali VADER: A Sentiment Analysis Approach Using Modified VADER. 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), doi: 10.1109/ECACE.2019.8679144. (pp. pp: 1-6). Cox’sBazar, Bangladesh, IEEE.
  2. Baccianella S, Esuli A, Sebastiani F. (2010). SENTIWORDNET 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining. LREC, p: 2200-2204.
  3. Bello, A. Ng, S.C. Leung, M.F. (2023). A BERT Framework to Sentiment Analysis of Tweets. Sensors, pp: 1-14.
  4. Cambria E. Olsher D. & Rajagopal D. (2014). SenticNet 3: A Common and Common-Sense Knowledge Base for Cognition-Driven Sentiment Analysis. Proceedings of the AAAI Conference on Artificial Intelligence, DOI: https://doi.org/10.1609/aaai.v28i1.8928 (pp. p: 1515-1521). Association for the Advancement of Artificial Intelligence.
  5. Hu M, Liu B. (2004). Mining and summarizing customer reviews. Proceedings of the tenth ACM SIGKDD international conference on knowledge discovery and data mining (pp. p. 168–177). Seattle, USA: ACM.
  6. Hutto, C.J. & Gilbert, E.E. (2014). VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text. Eighth International Conference on Weblogs and Social Media (ICWSM-14), https://doi.org/10.1609/icwsm.v8i1.14550 (pp. pp: 2016-225). Association for the Advancement of Artificial Intelligence.
  7. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. Proceedings of NAACL-HLT 2019 (pp. pp: 4171–4186). Minneapolis, Minnesota: Association for Computational Linguistics.
  8. K. M. Tymann et al. (2019). GerVADER - A German Adaptation of the VADER Sentiment Analysis Tool for Social Media Texts. Proceedings of the Conference on “Lernen, Wissen, Daten, Analysen - LWDA2019, http://ceur-ws.org/Vol-2454/paper_14.pdf, (pp. p: 1-12). Berlin, Germany.
  9. Kiritchenko S, Zhu X, Mohammad SM. (2014). Sentiment Analysis of Short Informal Texts. Journal of Artificial Intelligence Research, pp: 723-762.
  10. MF, C. (2018). Twitter sentiment analysis, 3-way classification: positive, negative or neutral? IEEE International Conference on Big Data (Big Data), (pp. pp: 2098–2103). Seattle, WA, USA: IEEE.
  11. Mohammed Elsaid Moussa et al. (2018). A generic lexicon-based framework for sentiment analysis. International Journal of Computers and Applications, https://doi.org/10.1080/1206212X.2018.1483813, pp: 463-473.
  12. Parveen et al. (2023). Twitter sentiment analysis using hybrid gated attention recurrent network. Journal of Big Data, https://doi.org/10.1186/s40537-023-00726-3, pp: 1-29.
  13. Sally, S. (2022). Sentiment analysis on youtube smart phone unboxing video reviews in Sri Lanka. International Journal of Research -GRANTHAALAYAH, pp: 53–63, doi: 10.29121/granthaalayah. v10.i11.2022.4884.
  14. Shihab Elbagir and Jing Yang. (2019). Twitter Sentiment Analysis Using Natural Language Toolkit and VADER Sentiment. Proceedings of the International MultiConference of Engineers and Computer Scientists 2019 (pp. pp: 1-5). Hong Kong: IMECS.
Language: English
Page range: 19 - 33
Published on: Dec 29, 2023
Published by: South East European University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year
Related subjects:

© 2023 Mërgim H. Hoti, Jaumin Ajdari, published by South East European University
This work is licensed under the Creative Commons Attribution 4.0 License.