References
- A. Amin, I. Hossain, A. Akther and K. M. Alam. (2019). Bengali VADER: A Sentiment Analysis Approach Using Modified VADER. 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), doi: 10.1109/ECACE.2019.8679144. (pp. pp: 1-6). Cox’sBazar, Bangladesh, IEEE.
- Baccianella S, Esuli A, Sebastiani F. (2010). SENTIWORDNET 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining. LREC, p: 2200-2204.
- Bello, A. Ng, S.C. Leung, M.F. (2023). A BERT Framework to Sentiment Analysis of Tweets. Sensors, pp: 1-14.
- Cambria E. Olsher D. & Rajagopal D. (2014). SenticNet 3: A Common and Common-Sense Knowledge Base for Cognition-Driven Sentiment Analysis. Proceedings of the AAAI Conference on Artificial Intelligence, DOI: https://doi.org/10.1609/aaai.v28i1.8928 (pp. p: 1515-1521). Association for the Advancement of Artificial Intelligence.
- Hu M, Liu B. (2004). Mining and summarizing customer reviews. Proceedings of the tenth ACM SIGKDD international conference on knowledge discovery and data mining (pp. p. 168–177). Seattle, USA: ACM.
- Hutto, C.J. & Gilbert, E.E. (2014). VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text. Eighth International Conference on Weblogs and Social Media (ICWSM-14), https://doi.org/10.1609/icwsm.v8i1.14550 (pp. pp: 2016-225). Association for the Advancement of Artificial Intelligence.
- J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. Proceedings of NAACL-HLT 2019 (pp. pp: 4171–4186). Minneapolis, Minnesota: Association for Computational Linguistics.
- K. M. Tymann et al. (2019). GerVADER - A German Adaptation of the VADER Sentiment Analysis Tool for Social Media Texts. Proceedings of the Conference on “Lernen, Wissen, Daten, Analysen - LWDA2019, http://ceur-ws.org/Vol-2454/paper_14.pdf, (pp. p: 1-12). Berlin, Germany.
- Kiritchenko S, Zhu X, Mohammad SM. (2014). Sentiment Analysis of Short Informal Texts. Journal of Artificial Intelligence Research, pp: 723-762.
- MF, C. (2018). Twitter sentiment analysis, 3-way classification: positive, negative or neutral? IEEE International Conference on Big Data (Big Data), (pp. pp: 2098–2103). Seattle, WA, USA: IEEE.
- Mohammed Elsaid Moussa et al. (2018). A generic lexicon-based framework for sentiment analysis. International Journal of Computers and Applications, https://doi.org/10.1080/1206212X.2018.1483813, pp: 463-473.
- Parveen et al. (2023). Twitter sentiment analysis using hybrid gated attention recurrent network. Journal of Big Data, https://doi.org/10.1186/s40537-023-00726-3, pp: 1-29.
- Sally, S. (2022). Sentiment analysis on youtube smart phone unboxing video reviews in Sri Lanka. International Journal of Research -GRANTHAALAYAH, pp: 53–63, doi: 10.29121/granthaalayah. v10.i11.2022.4884.
- Shihab Elbagir and Jing Yang. (2019). Twitter Sentiment Analysis Using Natural Language Toolkit and VADER Sentiment. Proceedings of the International MultiConference of Engineers and Computer Scientists 2019 (pp. pp: 1-5). Hong Kong: IMECS.