Have a personal or library account? Click to login
Pre-Training MLM Using Bert for the Albanian Language Cover

Pre-Training MLM Using Bert for the Albanian Language

By: Labehat Kryeziu and  Visar Shehu  
Open Access
|Jun 2023

References

  1. Abdelali, A., Hassan, S., & Mubarak, H. (2021). Pre-Training BERT on Arabic Tweets: Practical Considerations. Qatar Computing Research Institute. Doha 5825, Qatar: arXiv.
  2. Alsentzer, E., Murphy, J., Boag, W., Weng, W.-H., Jindi, D., Naumann, T., & McDermott, M. (2019). Publicly Available Clinical BERT Embeddings. (pp. 72-78). Proceedings of the 2nd Clinical Natural Language Processing Workshop.
  3. Canete, J., Chaperon, G., & Fuentes, R. (2019). Spanish pre-trained bert model and evaluation data. PML4DC at ICLR.
  4. Cui, Y., Che, W., Liu, T., Qin, B., Yang, Z., Wang, S., & Hu, G. (2019). Pre-Training with Whole Word Masking for Chinese BERT.
  5. Dai, A., & Le, Q. (2015). Semi-supervised sequence learning”, In Advances in neural information processing systems., (pp. 3079–3087).
  6. De Vries, W., Van Cranenburgh, A., Bisazza, A., Caselli, T., Van Noord, G., & Nissim, M. (2019). BERTje: A Dutch BERT Model. arXiv preprint arXiv.
  7. Delobelle, P., Winters, T., & Berendt, B. (2020). RobBERT: a Dutch RoBERTa-based Language Model.
  8. Delvin, J., Chang, M., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. NAACL-HLT.
  9. Hugging Face (2022). Transformers (4.4.2) [Computer software]. Retrieved from https://github.com/huggingface/transformers
  10. Gerz, D., Vulić, I., Ponti, E., Naradowsky, J., Reichart, R., Korhonen, A. (2018) Language Modeling for Morphologically Rich Languages: Character-Aware Modeling for Word-Level Prediction. Transactions of the Association for Computational Linguistics; 6 451–465. doi: https://doi.org/10.1162/tacl_a_00032
  11. Joseph, T., Lev, R., & Yoshua, B. (2010). Word representations: A simple and general method for semi-supervised learning. 48th Annual Meeting of the Association for Computational Linguistics.
  12. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. (pp. 1097-1105). Advances in neural information processing systems.
  13. Kryeziu, L., & Shehu, V. (2022). A Survey of Using Unsupervised Learning Techniques in Building Masked Language Models for Low Resource Languages. 2022 11th Mediterranean Conference on Embedded Computing (MECO) (pp. 1-6). Budva: MECO.
  14. Kryeziu, L., Shehu, V., & Caushi, A. (2022). Evaluation and Verification of NLP Datasets for the Albanian Language. International Conference on Artificial Intelligence of Things. Istanbul, Turkey.
  15. Kamps, J., Kondylidis, N., & Rau, D. (2020). Impact of Tokenization, Pretraining Task, and Transformer Depth on Text Ranking. In TREC.
  16. Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., Ho So, C., & Kang, J. (2020). BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics, (pp. 1234–1240).
  17. Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Stoyanov, V. (2019). RoBERTa: A Robustly Optimized BERT Pretraining Approach.
  18. Matthew, E., Mark, N., Mohit, J., Matt, G., Christopher, C., Kenton, L., & Luke, Z. (2018). Deep contextualized word representations.
  19. Özçift, A., Akarsu, K., Yumuk, F., & Söylemez, C. (2021). Advancing natural language processing (NLP) applications of morphologically rich languages with bidirectional encoder representations from transformers (BERT): an empirical case study for Turkish.
  20. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAI.
  21. Schweter, S. (2020). Berturk - bert models for turkish.
  22. Tian, H., Yang, K., Liu, D., & Lv, J. (2020). Anchibert: A pre-trained model for ancient chineselanguage understanding and generation. arXiv.
  23. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A., . . . Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing Systems, (pp. 6000–6010).
  24. Virtanen, A., Kanerva, J., Ilo, R., Luoma, J., Luotolahti, J., Salakoski, T., . . . Pyysalo, S. (2019). Multilingual is not enough: Bert for finnish.
  25. Winograd, T. (1972). Understanding natural language. (pp. 1-191). Cognitive psychology.
  26. Wu, S., & Dredze, M. (2019). The surprising cross-lingual effectiveness of BERT. Conference on Empirical Methods in Natural Language Processing (pp. 833–844). Hong Kong, China: Association for Computational Linguistics.
  27. Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R., & Le, Q. V. (2019). Xlnet: Generalized autoregressive pretraining for language understanding. Advances in Neural Information Processing Systems (NeurIPS), (pp. 5754–5764).
  28. Yuwen, Z., & Zhaozhuo, X. (2018). Bert for question answering on squad 2.0.
Language: English
Page range: 52 - 62
Published on: Jun 28, 2023
Published by: South East European University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year
Related subjects:

© 2023 Labehat Kryeziu, Visar Shehu, published by South East European University
This work is licensed under the Creative Commons Attribution 4.0 License.