Have a personal or library account? Click to login
Anomaly Detection on Univariate Sensing Time Series Data for Smart Aquaculture Using Deep Learning Cover

Anomaly Detection on Univariate Sensing Time Series Data for Smart Aquaculture Using Deep Learning

Open Access
|Jun 2023

References

  1. Braei, M., & Wagner, S. (2020). Anomaly Detection in Univariate Time-series: A Survey on the State-of-the-Art. Computer Science - arXiv.
  2. Choi, K., Yi, J., Park, C., & Yoon, S. (2021). Deep Learning for Anomaly Detection in Time-Series Data: Review, Analysis, and Guidelines. IEEE Access, 9, 120043 - 120065.
  3. Cook, A. A., Mısırlı, G., & Fan, Z. (2020). Anomaly Detection for IoT Time-Series Data: A Survey. IEEE Internet of Things Journal.
  4. Demestichas, K., Alexakis, T., Peppes, N., & Adamopoulou, E. (2021). Comparative Analysis of Machine Learning-Based Approaches for Anomaly Detection in Vehicular Data. Vehicles, 3, 171-186.
  5. Do, J. S., Kareem, A. B., & Hur, J.-W. (2023). LSTM-Autoencoder for Vibration Anomaly Detection in Vertical Carousel Storage and Retrieval System (VCSRS). Sensors.
  6. Dupont, C., Cousin, P., & Dupont, S. (2018). IoT for Aquaculture 4.0 Smart and easy-to-deploy real-time water monitoring with IoT. Global Internet of Things Summit (GIoTS). Bilbao, Spain.
  7. Encinas, C., Ruiz, E., Cortez, J., & Espinoza, A. (2017). Design and implementation of a distributed IoT system for the monitoring of water quality in aquaculture. Wireless Telecommunications Symposium (WTS). Chicago, IL, USA.
  8. Gaddam, A., Wilkin, T., & Angelova, M. (2019). Anomaly detection models for detecting sensor faults and outliers in the iot-a survey. 13th International Conference on Sensing Technology (ICST). Sydney, Australia.
  9. Hawkins, D. M. (1980). Identification of outliers (Vol. 11). Springer.
  10. Li, Y.-L., & Jiang, J.-R. (2020). Anomaly Detection for Non-Stationary and Non-Periodic Univariate Time Series. 2nd IEEE Eurasia Conference on IOT, Communication and Engineering.
  11. Liu, W., Jiang, H., Che, D., Chen, L., & Jiang1, Q. (2020). A Real-time Temperature Anomaly Detection Method for IoT Data. 5th International Conference on Internet of Things, Big Data and Securit.
  12. Liu, Y., Pang, Z., Karlsson, M., & Gonga, S. (October 2020). Anomaly detection based on machine learning in IoT-based vertical plant wall for indoor climate control. Building and Environment, 183.
  13. Mathieu, L., Aubin, J.-B., & Clemens, F. H. (2017). Interpolation in Time Series: An Introductive Overview of Existing Methods, Their Performance Criteria and Uncertainty Assessment. Water, 9(10).
  14. Nugroho, H., Susanty, M., Irawan, A., Koyimatu, M., & Yunita, A. (2020). Fully Convolutional Variational Autoencoder for Feature Extraction. Journal of Computer Science and Information.
  15. Petkovski, A., & Shehu, V. (2023). Anomaly Detection on Univariate Sensing Time Series Data for Smart Aquaculture Using K-Means, Isolation Forest, and Local Outlier Factor. Meco (12th Mediterranean Conference on Embedded Computing).
  16. Petkovski, A., Ajdari, J., & Zenuni, X. (2021). IoT-based Solutions in Aquaculture: A Systematic Literature Review. 2021 44th International Convention on Information, Communication and Electronic Technology (MIPRO).
  17. Ren, H., Xu, B., Wang, Y., Yi, C., Huang, C., & Kou, X. (July 2019). Time-Series Anomaly Detection Service at Microsoft. KDD ‘19: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, (pp. 3009–3017).
  18. Xu, H., Feng, Y., Chen, J., Wang, Z., Qiao, H., Chen, W., . . . Pei, D. (2018). Unsupervised Anomaly Detection via Variational Auto-Encoder for Seasonal KPIs in Web Applications. World Wide Web Conference.
  19. Cheng, Z., Zou, C., & Dong, J. (2019). Outlier detection using isolation forest and local outlier factor. RACS ‘19: Proceedings of the Conference on Research in Adaptive and Convergent Systems, (pp. 161–168). Gdansk, Poland.
  20. Mukherjee, S. (2021). Anomaly Detection. In: ML.NET Revealed. Apress, Berkeley, CA.
Language: English
Page range: 1 - 16
Published on: Jun 28, 2023
Published by: South East European University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year
Related subjects:

© 2023 Aleksandar Petkovski, Visar Shehu, published by South East European University
This work is licensed under the Creative Commons Attribution 4.0 License.