Have a personal or library account? Click to login
Accuracy Analysis of the Turbulence Models K–Ω GEKO and RSM Stress-BSL Using the Example of a 2D Hill Flow Problem Cover

Accuracy Analysis of the Turbulence Models K–Ω GEKO and RSM Stress-BSL Using the Example of a 2D Hill Flow Problem

Open Access
|Nov 2025

References

  1. van Druenen, T., Blocken, B. “CFD simulations of cyclist aerodynamics: Impact of computational parameters”, Journal of Wind Engineering and Industrial Aerodynamics 249, 105714, 2024.
  2. Santironnarong, S., Juntasaro, E. “Behavior of Generalized K-Omega (GEKO) Parameter on Performance Prediction of Airfoils Operating in Incompressible Region”, 2024. [online] Available at: https://www.dti.or.th/page_bx.php?lang=eng&cid=326&cno=7696
  3. Mosele, J. P. G., Gross, A., Slater, J. W. “Numerical Investigation of Flow Over”, Periodic Hill. In AIAA Aviation 2022 Forum (p. 3228), 2022.
  4. Strokach, E., Borovik, I., & Haidn, O. “Simulation of the GOx/GCH4 multi-element combustor including the effects of radiation and algebraic variable turbulent prandtl approaches”, Energies 13(19), 5009, 2020.
  5. Kutiš, V., et al. “CFD Analysis of Downcomer of Nuclear Reactor VVER 440”, Strojnícky časopis – Journal of Mechanical Engineering 66 (2), pp. 55 – 62, 2016. DOI: 10.1515/scjme-2016-0018
  6. Kutiš, V., et al. “CFD Analysis of Dry Cask Nuclear Fuel Storage”, Strojnícky časopis - Journal of Mechanical Engineering 69 (3), pp. 75 – 80, 2019. DOI: 10.2478/scjme-2019-0032
  7. Lolov, D. “Dynamic Stability of A Single Walled Carbon Nanotube, Embedded in A Polymer Matrix and Conveying A Pulsatile Flow”, Strojnícky časopis – Journal of Mechanical Engineering 75 (1), pp. 87 – 94, 2025. DOI: 10.2478/scjme-2025-0009
  8. Mellen, C. P., Fröhlich, J., Rodi, W. “Lessons from direct numerical simulation and large eddy simulation for Reynolds-averaged Navier–Stokes modelling of wall-bounded flows”, Journal of Fluid Mechanics, 1–35, 2000. DOI: 10.1017/S002211200000217X
  9. Temmerman, L., Leschziner, M. A., Mellen, C. P., Fröhlich, J. “Investigation of wall-function approximations and Reynolds-stress modeling in the prediction of separated flow in a curved duct”, International Journal of Heat and Fluid Flow 24(2), pp. 157 – 168, 2003. DOI: 10.1016/S0142-727X(02)00207-7
  10. Hussein, H. J., Martinuzzi, R. J. “Energy balance for turbulent flow around a surface mounted cube placed in a channel”, Physics of Fluids 8(3), pp. 764 – 780, 1996. DOI: 10.1063/1.868850
  11. Ganatra, K. A., Chattopadhyay, H., Mathur, A. “Investigation of free and impinging jets using generalized k–ω (GEKO) turbulence model”, International Journal of Heat and Fluid Flow 111, 109660, 2025.
  12. Strokach, E., Borovik, I., Chen, F. “Numerical simulation of reacting flow in the combustion chamber and study of the impact of turbulent diffusion coefficients”, Advances in Mechanical Engineering, 12(9), 1687814020954974, 2020.
  13. Rossano, V., De Stefano, G. “Testing a generalized two-equation turbulence model for computational aerodynamics of a mid-range aircraft”, Applied Sciences 13 (20), 11243, 2023.
  14. Murodil, Madaliev, et al. “Numerical Study of Three-Phase Liquid-Gas-Solid Flow in Single and Group Hydrocyclones”, Strojnícky časopis – Journal of Mechanical Engineering 75 (1), pp. 103 – 110, 2025. DOI: 10.2478/scjme-2025-0011
  15. Pacoň, L., et al. “Prediction of Pulsating Turbine Operation Using 1-D - 3-D Co-Simulation”, Strojnícky časopis – Journal of Mechanical Engineering 72 (3), pp. 81 – 96, 2022. DOI: 10.2478/scjme-2022-0043
  16. Almeida, G. P., Durao, D. F. G., Heitor, M. V. “Wake flows behind two dimensional model hills”, Exp. Thermal and Fluid Science 7, p. 87, 1992.
  17. Almeida, G.P., Durao, D.F.G., Simoes, J.P., Heitor, M.V. “Laser-Doppler measurements of fully developed turbulent channel flow”, Proc. 5th Symp. Appl Laser Techniques to Fluid Mech., pp. 5 – 12, 1990.
  18. Hunt, J.C.R., Snyder, W.H. “Experiments on stably and neutrally stratified flow over a model three-dimensional hill”, J. Fluid Mech. 96, pp. 671 – 704, 1980.
  19. Castro, J.P., Haque, A. “The structure of a turbulent shear layer bounding a separation region”, J. Fluid Mech. 179, pp. 439 – 468, 1987.
  20. Malikov, Z. M., Nazarov, F. K. “Study of turbulence models for calculating a strongly swirling flow in an abrupt expanding channel”, Computer research and modeling 13 (4), pp. 793 – 805, 2021.
  21. Madaliev, M., Usmonov, M., Kadyrov, K., Abdullajonov, N., Mavlonova, D., Otakhanova, Z., Muminov, K. “Numerical analysis of single SC-50-800 and SC-50-500x2-x4 group centrifugal cyclones: efficiency comparison”, In E3S Web of Conferences (Vol. 508, p. 06005). EDP Sciences, 2024.
  22. Malikov, Z. M., Madaliev, M. E. “Mathematical modeling of a turbulent flow in a centrifugal separator”, Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika 71, pp. 121 – 138, 2021.
  23. Li, Z., Liu, Y., Zhou, W., Wen, X., Liu, Y. “Thermal pollution level reduction by sweeping jet-based enhanced heat dissipation: A numerical study with calibrated Generalized k-ω (GEKO) model”, Applied Thermal Engineering 204, 117990, 2022.
  24. Nilufar, K. “Numerical Simulation of Aerodynamic Flow Around a Building Using OpenFOAM Software”, Journal of Construction and Engineering Technology 3(2), pp. 8 – 14, 2025. DOI: 10.24412/2181-4473-2025.3.202
  25. Utbosarov, S., Muminov, O. “Analysis of CFD Modeling of the Karkidon Reservoir Spillway Operation Using the SST Turbulent Model”, Journal of Construction and Engineering Technology 3(1), pp. 1 – 15, 2025. DOI: 10.24412/2181-4473-2025.3.101
  26. ANSYS Inc. (2024). “Generalized k-ω (GEKO) Two-Equation Turbulence Modeling in Ansys CFD”. [online] Available at: https://www.ansys.com/resource-center/technical-paper/best-practice-geko-turbulence-modeling-in-ansys-cfd
  27. Menter, F. R. “Two-equation eddy-viscosity turbulence models for engineering applications”, AIAA Journal 32 (8), pp. 1598 – 1605, 1994.
  28. Eisfeld, B., Rumsey, C., Togiti, V. “Erratum: Verification and Validation of a Second-Moment-Closure Model,” AIAA Journal 54 (9), p. 2926, 2016. DOI: 10.2514/1.J055336
  29. Cecora, R.-D., Radespiel, R., Eisfeld, B., Probst, A. “Differential Reynolds-Stress Modeling for Aeronautics”, AIAA Journal 53 (3), pp. 739 – 755, 2015. DOI: 10.2514/1.J053250
  30. Cecora, R.-D., Eisfeld, B., Probst, A., Crippa, S., Radespiel, R. “Differential Reynolds Stress Modeling for Aeronautics”, AIAA Paper 2012 – 0465, 2012. DOI: 10.2514/6.2012-465
  31. Eisfeld, B. “Implementation of Reynolds Stress Models into the DLR-FLOWer Code”, Institutsbericht, DLR-IB 124-2004/31, Report of the Institute of Aerodynamics and Flow Technology, Braunschweig, ISSN 1614-7790, 2004.
DOI: https://doi.org/10.2478/scjme-2025-0022 | Journal eISSN: 2450-5471 | Journal ISSN: 0039-2472
Language: English
Page range: 39 - 52
Published on: Nov 28, 2025
Published by: Slovak University of Technology in Bratislava
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Madaliev Murodil, Arifjanov Aybek, Samiev Lukmon, Abdulkhaev Zokhidjon, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.