Have a personal or library account? Click to login

Study on Influencing of Processing Parameters on Tensile Strength of 3D Printing Sample

Open Access
|Apr 2025

References

  1. Zhang, Z., Wang, B., Hui, D., Qiu, J., Wang, S."3D bioprinting of soft materials-based regenerative vascular structures and tissues", Composites Part B: Engineering 123, pp. 279–291, 2017. DOI: 10.1016/j.compositesb.2017.05.011
  2. Wang, X., Jiang, M., Zhou, Z., Gou, J., Hui, D. "3D printing of polymer matrix composites: A review and prospective", Composites Part B: Engineering 110, pp. 442–458, 2017. DOI: 10.1016/j.compositesb.2016.11.034
  3. Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T. Q., Hui, D. "Additive manufacturing (3D printing): A review of materials, methods, applications and challenges", Composites Part B: Engineering 143, pp. 172–196, 2018. DOI: 10.1016/j.compositesb.2018.02.012
  4. Parandoush, P., Lin, D. "A review on additive manufacturing of polymer-fiber composites", Composite Structures 182, pp. 36–53, 2017. DOI: 10.1016/j.compstruct.2017.08.088
  5. Majko, J., Handrik, M., Vaško, M., Sága, M. "Influence of Fiber Deposition and Orientation on Stress Distribution in Specimens Produced Using 3D Printing", Strojnícky časopis–Journal of Mechanical Engineering 69 (3), pp. 81–88, 2019. DOI: 10.2478/scjme-2019-0033
  6. Sejč, P., Jaroš, J., Vanko, B. "Use of Laser Metal Deposition Technology in Additive Manufacturing of Ni Powder Materials", Strojnícky časopis - Journal of Mechanical Engineering 72 (2), pp. 161–172, 2022. DOI: 10.2478/scjme-2022-0026
  7. Handrik, M., Vaško, M., Majko, J., Sága, M., Dorčiak, F. "Influence of the Shape of the Test Specimen Produced by 3D Printing on the Stress Distribution in the Matrix and in Long Reinforcing Fibers", Strojnícky časopis - Journal of Mechanical Engineering 69 (3), pp. 61 - 68, 2019. DOI: 10.2478/scjme-2019-0030
  8. Kumar, L. J., Krishnadas Nair, C. G. "Current Trends of Additive Manufacturing in the Aerospace Industry", in Advances in 3D Printing & Additive Manufacturing Technologies, D. I. Wimpenny, P. M. Pandey, and L. J. Kumar, Eds., ed Singapore: Springer Singapore, pp. 39–54, 2017.
  9. Stepashkin, А. А., Chukov, D. I., Senatov, F. S., Salimon, A. I., Korsunsky, A. M., Kaloshkin, S. D. "3D-printed PEEK-carbon fiber (CF) composites: Structure and thermal properties", Composites Science and Technology 164, pp. 319–326, 2018. DOI: 10.1016/j.compscitech.2018.05.032
  10. Pyl, L., Kalteremidou, K.-A., Van Hemelrijck, D. "Exploration of the design freedom of 3D printed continuous fibre-reinforced polymers in open-hole tensile strength tests," Composites Science and Technology 171, pp. 135–151, 2019. DOI: 10.1016/j.compscitech.2018.12.021
  11. Tekinalp, H. L., Kunc, V., Velez-Garcia, G. M., Duty, C. E., Love, L. J., Naskar, A. K., et al. "Highly oriented carbon fiber–polymer composites via additive manufacturing", Composites Science and Technology 105, pp. 144–150, 2014. DOI: 10.1016/j.compscitech.2014.10.009
  12. Berman, B. "3-D printing: The new industrial revolution", Business Horizons 55, pp. 155–162, 2012. DOI: 10.1016/j.bushor.2011.11.003
  13. Wolfs, R. J. M., Bos, F. P., Salet, T. A. M. "Early age mechanical behaviour of 3D printed concrete: Numerical modelling and experimental testing", Cement and Concrete Research 106, pp. 103–116, 2018. DOI: 10.1016/j.cemconres.2018.02.001
  14. Panda, B., Lim, J. H., Tan, M. J. "Mechanical properties and deformation behaviour of early age concrete in the context of digital construction", Composites Part B: Engineering 165, pp. 563–571, 2019. DOI: 10.1016/j.compositesb.2019.02.040
  15. Mohanavel, V., Priyadharshan. R, Ravichandran, M, Sivanraju, R., Velmurugan, P., Subbiah, R. "The Role and Application of 3D Printer in the Automobile Industry", ECS Transactions 107, p. 12001, 2022. DOI: 10.1149/10701.12001ecst
  16. Do, A.-V., Khorsand, B., Geary, S. M., Salem, A. K. "3D Printing of Scaffolds for Tissue Regeneration Applications", Advanced Healthcare Materials 4, pp. 1742–1762, 2015. DOI: 10.1002/adhm.201500168
  17. Wang, M. O., Vorwald, C. E., Dreher, M. L., Mott, E. J., Cheng, M.-H., Cinar, A. et al. "Evaluating 3D-Printed Biomaterials as Scaffolds for Vascularized Bone Tissue Engineering", Advanced Materials 27, pp. 138–144, 2015. DOI: 10.1002/adma.201403943
  18. Blaeser, A., Duarte Campos, D. F., Puster, U., Richtering, W., Stevens, M. M., Fischer, H. "Controlling Shear Stress in 3D Bioprinting is a Key Factor to Balance Printing Resolution and Stem Cell Integrity", Advanced Healthcare Materials 5, pp. 326–333, 2016. DOI: 10.1002/adhm.201500677
  19. Zhu, W., Ma, X., Gou, M., Mei, D., Zhang, K., Chen, S. "3D printing of functional biomaterials for tissue engineering", Current Opinion in Biotechnology 40, pp. 103–112, 2016. DOI: 10.1016/j.copbio.2016.03.014
  20. Lipton, J. I., Cutler, M., Nigl, F., Cohen, D. Lipson, H. "Additive manufacturing for the food industry", Trends in Food Science & Technology 43, pp. 114–123, 2015. DOI: 10.1016/j.tifs.2015.02.004
  21. Sun, J., Zhou, W., Huang, D., Fuh, J. Y. H., Hong, G. S. "An Overview of 3D Printing Technologies for Food Fabrication", Food and Bioprocess Technology 8, pp. 1605–1615, 2015. DOI: 10.1007/s11947-015-1528-6
  22. Godoi, F. C., Prakash, S., Bhandari, B. R. "3d printing technologies applied for food design: Status and prospects", Journal of Food Engineering 179, pp. 44–54, 2016. 10.1016/j.jfoodeng.2016.01.025
  23. Wang, B. Z., Chen, Y. "The Effect of 3D Printing Technology on the Future Fashion Design and Manufacturing", Applied Mechanics and Materials 496–500, pp. 2687–2691, 2014. DOI: 10.4028/www.scientific.net/AMM.496-500.2687
  24. Dimić, A., Mišković, Ž., Mitrović, R., Ristivojević, M., Stamenić, Z., Danko, J. et al., "The Influence of Material on the Operational Characteristics of Spur Gears Manufactured by the 3D Printing Technology", Strojnícky časopis–Journal of Mechanical Engineering 68 (3), pp. 261–270, 2018. DOI: 10.2478/scjme-2018-0039
  25. Kiendl, J., Gao, C. "Controlling toughness and strength of FDM 3D-printed PLA components through the raster layup", Composites Part B: Engineering 180, p. 107562, 2020. DOI: 10.1016/j.compositesb.2019.107562
  26. Yao, T., Ye, J., Deng, Z., Zhang, K., Ma, Y., Ouyang, H. "Tensile failure strength and separation angle of FDM 3D printing PLA material: Experimental and theoretical analyses", Composites Part B: Engineering 188, p. 107894, 2020. DOI: 10.1016/j.compositesb.2020.107894
  27. Hsueh, M.-H., Lai, C.-J., Wang, S.-H., Zeng, Y.-S., Hsieh, C.-H., Pan, C.-Y. et al. (Effect of Printing Parameters on the Thermal and Mechanical Properties of 3D-Printed PLA and PETG, Using Fused Deposition Modeling. Polymers 13(11), 2021. Available at: https://mdpi-res.com/d_attachment/polymers/polymers-13-01758/article_deploy/polymers-13-01758.pdf?version=1622113824
  28. "Kingroon", https://kingroon.com/collections/petg-filament (lasted access 14 Aug 2024)
  29. "Anycubic", https://store.anycubic.com/products/anycubic-i3-mega-s (lasted access 14 Aug 2024)
  30. "A International, Standard test method for tensile properties of plastics: ASTM international", 2014.
  31. Dean, A., Voss, D. "Design and analysis of experiments", Springer, 1999.
DOI: https://doi.org/10.2478/scjme-2025-0004 | Journal eISSN: 2450-5471 | Journal ISSN: 0039-2472
Language: English
Page range: 27 - 38
Published on: Apr 30, 2025
Published by: Slovak University of Technology in Bratislava
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Hoang Tien Dung, Trinh Van-Long, Ngo Quang-Tu, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.