Have a personal or library account? Click to login
On the Generation of an Intense Temperature Gradient Through a Modified Shock Tube Hydrodynamics for a Possible Continuous Sterilization Process Cover

On the Generation of an Intense Temperature Gradient Through a Modified Shock Tube Hydrodynamics for a Possible Continuous Sterilization Process

By: Houcine Hachoum and  Hatem Ksibi  
Open Access
|Nov 2022

References

  1. [1] Bleakney, W., Weimer, D., Fletcher, C. “The shock tube: a facility for investigations in fluid dynamics”, Review of Scientific Instruments 20(11), pp. 807 – 815, 1949. DOI: 10.1063/1.1741395
  2. [2] Stotz, I., Lamanna, G., Hettrich, H., Weigand, B., Steelant, J. “Design of a double diaphragm shock tube for fluid disintegration studies“, Review of Scientific Instruments 79(12), 125106, 2008. DOI: 10.1063/1.3058609
  3. [3] Schiffer, A., Gardner, M. N., Lynn, R. H, Tagarielli, V. L. “A new apparatus to induce lysis of planktonic microbial cells by shock compression, cavitation and spray“, Royal Society open science 4(3), 160939, 2017. DOI: 10.1098/rsos.160939
  4. [4] Logan N. J., Arora, H., Higgins, C.A. “Evaluating primary blast effects in vitro“, Journal of visualized experiments: JoVE 127, 2017, DOI: 10.3791/55618
  5. [5] Kompis, V., Vanco, M., Ferencey V. “Shock Waves Propagation in Composite Materials“, Strojnícky časopis – Journal of Mechanical Engineering 61(2), pp. 73 – 87, 2010.
  6. [6] Javed T., Badra, M., Jaasim, E., Es-Sebbar, M. F., Labastida, S. H., Chung, H. G. “Im Shock tube ignition delay data affected by localized ignition phenomena“, Combustion Science and Technology 189(7), 1138 – 1161, 2017. DOI: 10.1080/00102202.2016.1272599
  7. [7] Alexeev, A., Gutfinger, C. “Aerosol deposition in periodic shock waves“, Physics of Fluids 16(4), pp. 1028 – 1036, 2004. DOI: 10.1063/1.1649342
  8. [8] Sela, P., Peukert, S., Herzler, J., Schulz, C., Fikri, M. “Shock-tube study of the decomposition of octamethylcyclotetrasiloxane and hexamethylcyclotrisiloxane“, Zeitschrift für Physikalische Chemie 234 (7-9), pp. 1395 – 1426, 2020. DOI: 10.1515/zpch-2020-0005
  9. [9] Arciniega-Ceballos, A., Alatorre-Ibargüengoitia, M., Scheu, B., Dingwell, D. B., Delgado-Granados, H. “Seismological analysis of conduit dynamics in fragmentation experiments“, Journal of Geophysical Research: Solid Earth 119 (3), pp. 2215 – 2229, 2014. DOI: 10.1002/2013JB010646
  10. [10] Kumar, R., Nedungadi, A. “Using gas-driven shock tubes to produce blast wave signatures“, Frontiers in neurology 11(90), 2020. DOI: 10.3389/fneur.2020.00090
  11. [11] Bernhardt, A., Wehrl, M., Paul, B., Hochmuth, T., Schumacher, M., Schütz, K., Gelinsky, M. “Improved Sterilization of Sensitive Biomaterials with Supercritical Carbon Dioxide at Low Temperature“, PLoS One. 10(6), e0129205, 2015. DOI: 10.1371/journal.pone.0129205
  12. [12] Junker, B., Lester, M., Brix, T., Wong, D., Nuechterlein, J. “A next generation, pilot-scale continuous sterilization system for fermentation media“, Bioprocess Biosyst Eng 28(6), pp. 351 – 378, 2006. DOI: 10.1007/s00449-005-0041-0
  13. [13] Tamaki, F., Kim, C. S. “Studies on the Hypersonic Flow Using a Double-Diaphragm Shock Tube“, Journal of the Physical Society of Japan 12 (5), pp. 550 – 555, 1957. DOI: 10.1143/JPSJ.12.550
  14. [14] Holbeche, T., Spence, D. “A theoretical and experimental investigation of temperature variation behind attenuating shock waves“, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 279 (1376), pp. 111 – 128, 1964. DOI: 10.1098/rspa.1964.0093
  15. [15] Hodgson, A. W., Mackie, J. C. “Double-diaphragm shock tube-Comparison between theory and experiment“, AIAA Journal 19 (3), pp. 405 – 406, 1981. DOI: 10.2514/3.7781
  16. [16] Sod, G.A. “A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws“, Journal of computational physics 27 (1), pp. 1 – 31, 1978. DOI: 10.1016/0021-9991(78)90023-2
  17. [17] Harten, A. “High resolution schemes for hyperbolic conservation laws“, Journal of Computational Physics 49 (3), pp. 357 – 393, 1983. DOI: 10.1016/0021-9991(83)90136-5
  18. [18] Goldshtein, A., Vainshtein, P., Fichman, M., Gutfinger, C. “Resonance gas oscillations in closed tubes“, Journal of Fluid Mechanics 322, pp. 147 – 163, 1996. DOI: 10.1017/S0022112096002741
  19. [19] Bendaas, S. “Periodic wave shock solutions of Burgers equations“, Cogent Mathematics & Statistics 5 (1), 1463597, 2018. DOI: 10.1080/25742558.2018.1463597
  20. [20] Seyranian, A. P. “Sensitivity analysis of eigenvalues and development of instability“, Strojnícky časopis – Journal of Mechanical Engineering 42 (3), pp. 193 – 208, 1991.
  21. [21] Montagne, J. L., Yee, H. C., Vinokur, M. “Comparative study of high-resolution shock-capturing schemes for a real gas“, AIAA journal 27 (10), pp. 1332 – 1346, 1989. DOI: 10.2514/3.10269
  22. [22] Ksibi, H., Ben Moussa, A. “Numerical simulation of a one-dimensional shock tube problem at supercritical fluid conditions“, International Journal of Fluid Mechanics Research 35 (1), 2008. DOI: 10.1615/InterJFluidMechRes.v35.i1.30
  23. [23] Ben Moussa, A., Ksibi, H., Tenaud, C. Baccar, M. “Paramètres géométriques de contrôle de la détente d’un fluide supercritique“, International Journal of Thermal Sciences 44, pp. 774 – 786, 2005. DOI: 10.1016/j.ijthermalsci.2005.01.004
  24. [24] Altunin, V. V., Gadetskii, O. G. “Equation of state and thermodynamic properties of liquid and gaseous carbon dioxide“, Thermal Engineering 18 (3), pp. 120 – 125, 1971.
DOI: https://doi.org/10.2478/scjme-2022-0018 | Journal eISSN: 2450-5471 | Journal ISSN: 0039-2472
Language: English
Page range: 81 - 92
Published on: Nov 7, 2022
Published by: Slovak University of Technology in Bratislava
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 Houcine Hachoum, Hatem Ksibi, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.