References
- [1] Ahmadkhaniha, D., Heydarzadeh Sohi, M., Zarei-Hanzaki, A. “Optimisation of friction stir processing parameters to produce sound and fine grain layers in pure magnesium”, Sci. Technol. Weld. Join. 19 (3), pp. 235 – 241, 2014.
- [2] Mahoney, M. W. “Friction stir welding and processing”, Mater. Sci. Eng. R Reports, 50 (1 – 2), p. 360, 2007.
- [3] Chang, C. I., Du, X. H., Huang, J. C. “Achieving ultrafine grain size in Mg-Al-Zn alloy by friction stir processing”, Scr. Mater. 57 (3), pp. 209 – 212, 2007.
- [4] Zhang, Y., Sato, Y. S., Kokawa, H., Park, S. H. C., Hirano, S. “Stir zone microstructure of commercial purity titanium friction stir welded using pcBN tool”, Mater. Sci. Eng. A, 488 (1–2), pp. 25 – 30, 2008.
- [5] McNelley, T. R., Swaminathan, S., Su, J. Q. “Recrystallization mechanisms during friction stir welding/processing of aluminum alloys”, Scr. Mater. 58 (5), pp. 349 – 354, 2008.
- [6] Ma, Z. Y. “Friction Stir Processing Technology: A Review”, Metall. Mater. Trans. A 39 (3), pp. 642–658, 2008.
- [7] Ma, Z. Y., Liu, F. C., Mishra, R. S. “Superplastic deformation mechanism of an ultrafine-grained aluminum alloy produced by friction stir processing”, Acta Mater 58 (14), pp. 4693 – 4704, 2010.
- [8] Ma, Z. Y., Mishra, R. S., Mahoney, M. W. “Superplastic deformation behaviour of friction stir processed 7075Al alloy”, Acta Mater. 50, pp. 4419 – 4430, 2002.
- [9] Charit, I., Mishra, R. S. “High strain rate superplasticity in a commercial 2024 Al alloy via friction stir processing”, Mater. Sci. Eng. A 359 (1–2), pp. 290 – 296, 2003.
- [10] Hsu, C. J., Kao, P. W., Ho, N. J., Chang, C. Y. P. Y. “Al-Al3Ti nanocomposites produced in situ by friction stir processing”, Acta Mater. 54 (19), pp. 5241 – 5249, 2006.
- [11] Ke, L., Huang, C., Xing, L., Huang, K. “Al – Ni intermetallic composites produced in situ by friction stir processing”, J. Alloys Compd. 503 (2), pp. 494 – 499, 2010.
- [12] Hsu, C. J., Kao, P. W., Ho, N. J. “Ultrafine-grained Al-Al2Cu composite produced in situ by friction stir processing”, Scr. Mater. 53 (3), pp. 341 – 345, 2005.
- [13] Lim, D. K., Shibayanagi, T., Gerlich, A. P. “Synthesis of multi-walled CNT reinforced aluminium alloy composite via friction stir processing”, Mater. Sci. Eng. A 507 (1–2), pp. 194 – 199, 2009.
- [14] Dixit, M., Newkirk, J. W., Mishra, R. S. “Properties of friction stir-processed Al 1100-NiTi composite”, Scr. Mater. 56 (6), pp. 541 – 544, 2007.
- [15] Barmouz, M., Asadi, P., Besharati Givi, M. K., Taherishargh, M. “Investigation of mechanical properties of Cu/SiC composite fabricated by FSP: Effect of SiC particles’ size and volume fraction”, Mater. Sci. Eng. A 528 (3), pp. 1740 – 1749, 2011.
- [16] Zhao, Y. H., Lin, S. B., Wu, L., Qu, F. X. “The influence of pin geometry on bonding and mechanical properties in friction stir weld 2014 Al alloy”, Mater. Lett. 59 (23), pp. 2948 – 2952, 2005.
- [17] Scialpi, A., De Filippis, L. A. C., Cavaliere, P. “Influence of shoulder geometry on microstructure and mechanical properties of friction stir welded 6082 aluminium alloy”, Materials & Design 28, pp. 1124 – 1129, 2007.
- [18] Elangovan, K., Balasubramanian, V. “Influences of tool pin profile and tool shoulder diameter on the formation of friction stir processing zone in AA6061 aluminium alloy,” Mater. Des. 29, pp. 362 – 373, 2008.
- [19] Arora, A., De, A., Debroy, T. “Toward optimum friction stir welding tool shoulder diameter”, Scr. Mater. 64 (1), pp. 9 – 12, 2011.
- [20] Krasnowski, K., Hamilton, C., Dymek, S. “Influence of the tool shape and weld configuration on microstructure and mechanical properties of the Al 6082 alloy FSW joints”, Arch. Civ. Mech. Eng. 15 (1), pp. 133 – 141, 2015.
- [21] Das, J., Rao, G. A., Pabi, S. K., Sankaranarayana, M., Nandy, T. K. “Thermo-mechanical processing, microstructure and tensile properties of a tungsten heavy alloy,” Mater. Sci. Eng. A 613, pp. 48 – 59, 2014.
- [22] Ghosh, M., Kumar, K., Mishra, R. S. “Analysis of microstructural evolution during friction stir welding of ultrahigh-strength steel”, Scr. Mater. 63 (8), pp. 851 – 854, 2010.
- [23] Najafi, M., Nasiri, A. M., Kokabi, A. H. “Microstructure and Hardness of Friction Stir Processed AZ31 with SiC”, International Journal of Modern Physics B 22, pp. 2879 – 2885, 2008.
- [24] Kumar, K., Kailas, S. V. “The role of friction stir welding tool on material flow and weld formation”, Mater. Sci. Eng. A 485 (1–2), pp. 367 – 374, 2008.
- [25] Nandan, R., Debroy, T., Bhadeshia, H. K. D. H. “Recent advances in friction-stir welding – Process, weldment structure and properties”, Progress in Materials Science 53, pp. 980 – 1023, 2008.
- [26] Scutelnicu, E. “Fundamentals of the Process and Tools Design : Friction Stir Processing of Materials”, vol. 47, no. September 2003, p. 4639, 2006.
- [27] Rai, R., De, A., Bhadeshia, H. K. D. H., DebRoy, T., “Review: friction stir welding tools,” Sci. Technol. Weld. Join. 16 (4), pp. 325 – 342, 2011.
- [28] Palanivel, R., Koshy Mathews, P., Murugan, N., Dinaharan, I. “Effect of tool rotational speed and pin profile on microstructure and tensile strength of dissimilar friction stir welded AA5083-H111 and AA6351-T6 aluminum alloys”, Mater. Des. 40, pp. 7 – 16, 2012.
- [29] Boz, M., Kurt, A. “The influence of stirrer geometry on bonding and mechanical properties in friction stir welding process”, Mater. Des. 25 (4), pp. 343 – 347, 2004.
- [30] Mishra, R. S., Ma, Z. Y. “Friction stir welding and processing”, Mater. Sci. Eng. R Reports 50 (1–2), pp. 1 – 78, 2005.
- [31] Shashi Kumar, S., Murugan, N., Ramachandran K. K. “Influence of tool material on mechanical and microstructural properties of friction stir welded 316L austenitic stainless steel butt joints”, Int. J. Refract. Met. Hard Mater. 58, pp. 196 – 205, 2016.
- [32] Darras, B. M., Khraisheh, M. K., Abu-Farha, F. K., Omar M. A. “Friction stir processing of commercial AZ31 magnesium alloy,” J. Mater. Process. Technol. 191 (1–3), pp. 77 – 81, 2007.
- [33] Keerthana, B., Vijaya Kumar, G., Anand Babu, K. “Effect of minimum quantity lubrication on surface roughness and temperature in milling of EN31 steel for die making”, Strojnícky časopis – Journal of Mechanical Engineering 69 (1), pp. 61 – 68, 2019. DOI: 10.2478/scjme-2019-0005
- [34] de Giorgi, M.,Scialpi, A., Panella, F. W., de Filippis, L. A. C. “Effect of shoulder geometry on residual stress and fatigue properties of AA6082 FSW joints”, J. Mech. Sci. Technol. 23 (1), pp. 26 – 35, 2009.
- [35] Handa, A, Chawla, V. “Experimental evaluation of mechanical properties of friction welded dissimilar steels under varying axial pressures”, Strojnícky časopis – Journal of Mechanical Engineering 66 (1), pp. 27 – 36, 2016. DOI: 10.1515/scjme-2016-0008
- [36] Ramachandran, K. K., Murugan, N., S. K. S, “An Assessment on Friction Stir Welding of High Melting Temperature Materials”, Applied Mechanics and Materials 594, pp. 43 – 47, 2014.
- [37] Pilchak, A. L., Williams, J. C., “Microstructure and texture evolution during friction stir processing of fully lamellar Ti-6Al-4V”, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 42 (3), pp. 773 – 794, 2011.
- [38] Feng, A. H., Ma, Z. Y. “Formation of Cu2FeAl7phase in friction-stir-welded SiCp/Al-Cu-Mg composite,” Scr. Mater. 57 (12), pp. 1113 – 1116, 2007.
- [39] R. S. Mishra, P. S. De, and N. Kumar, Friction Stir Welding and Processing. 2014.
- [40] Siddiquee, A. N., Pandey, S. “Experimental investigation on deformation and wear of WC tool during friction stir welding (FSW) of stainless steel”, 2014.
- [41] Thompson, B., Babu, S. S. “Tool Degradation Characterization in the Friction Stir Welding of Hard Metals”, Weld. J. 89 (12), pp. 256 – 261, 2010.
- [42] Nathan, S. R., Malarvizhi, S., Balasubramanian, V., Rao, A. G. “Failure analysis of tungsten based tool materials used in friction stir welding of high strength low alloy steels”, EFA 66, pp. 88 – 98, 2016.
- [43] Gan, W., Li, Z. T., Khurana, S. “Tool materials selection for friction stir welding of L80 steel”, Sci. Technol. Weld. Join. 12 (7), pp. 610 – 613, 2007.
- [44] García-Bernal, M. A., Mishra, R. S., Verma, R., Hernández-silva, D. “Influence of friction stir processing tool design on microstructure and superplastic behavior of Al-Mg alloys”, Mater. Sci. Eng. A 670, pp. 9 – 16, 2016.
- [45] Thomas, W. M., Nicholas, E. D., Smith, S. D. “Friction stir welding - tool developments,” no. February, pp. 11 – 15, 2001.
- [46] Buffa, G., Hua, J., Shivpuri, R., Fratini, L. “Design of the friction stir welding tool using the continuum based FEM model”, Mater. Sci. Eng. A 419 (1–2), pp. 381 – 388, 2006.
- [47] Fujii, H., Cui, L., Maeda, M., Nogi, K. “Effect of tool shape on mechanical properties and microstructure of friction stir welded aluminum alloys”, 419, pp. 25 – 31, 2006.
- [48] Colegrove, P. A., Shercliff, H. R. “Development of Trivex friction stir welding tool Part 1 – two-dimensional flow modelling and experimental validation”, 9 (4), pp. 345 – 351, 2004.
- [49] Colegrove, P. A., Shercliff, H. R. “3-Dimensional CFD modelling of flow round a threaded friction stir welding tool profile,”169, pp. 320 – 327, 2005.
- [50] Colegrove, P. A., Shercliff, H. R. “Development of Trivex friction stir welding tool Part 2 – three-dimensional flow modelling”, Sci. Technol. Weld. Join. 9 (4), pp. 352 – 361, 2004.
- [51] Elangovan, K., Balasubramanian, V. “Influences of tool pin profile and welding speed on the formation of friction stir processing zone in AA2219 aluminium alloy”, J. Mater. Process. Technol. 200 (1–3), pp. 163 – 175, 2008.
- [52] Elangovan, K., Balasubramanian, V. “Influences of pin profile and rotational speed of the tool on the formation of friction stir processing zone in AA2219 aluminium alloy,” 459, pp. 7 – 18, 2007.
- [53] H. K. Mohanty, M. M. Mahapatra, P. Kumar, P. Biswas, and N. R. Mandal, “Effect of Tool Shoulder and Pin Probe Profiles on Friction Stirred Aluminum Welds – a Comparative Study”, pp. 200 – 207, 2012.
- [54] M. Skinner and R. L. Edwards, “Improvements to the FSW Process Using the Self-Reacting Technology,” Mater. Sci. Forum 426–432, pp. 2849 – 2854, 2009.
- [55] W. Y. Li et al., “Effects of tool rotational and welding speed on microstructure and mechanical properties of bobbin-tool friction-stir welded Mg AZ31,” 64, pp. 714 – 720, 2014.
- [56] P. L. Threadgill, M. M. Z. Ahmed, J. P. Martin, J. G. Perrett, and B. P. Wynne, “The use of bobbin tools for friction stir welding of aluminium alloys”, Mater. Sci. Forum 642, pp. 1179 – 1184, 2010.
- [57] Y. Huang, T. Wang, W. Guo, L. Wan, S. Lv, “Microstructure and surface mechanical property of AZ31 Mg / SiC p surface composite fabricated by Direct Friction Stir Processing,” J. Mater. 59, pp. 274–278, 2014.
- [58] I. Galvão, R. M. Leal, D. M. Rodrigues, A. Loureiro, “Journal of Materials Processing Technology Influence of tool shoulder geometry on properties of friction stir welds in thin copper sheets”, 213, pp. 129–135, 2013.
- [59] Ø. Frigaard, Ø. Grong, and O. T. Midling “A Process Model for Friction Stir Welding of Age Hardening Aluminum Alloys”, 32, no. May, pp. 1189 – 1190, 2001.
- [60] S. Lomolino, R. Tovo, and J. Santos “On the fatigue behaviour and design curves of friction stir butt-welded Al alloys”, 27, pp. 305 – 316, 2005.
- [61] M. N. James, D. G. Hattingh, and G. R. Bradley “Weld tool travel speed effects on fatigue life of friction stir welds in 5083 aluminium”, 25, pp. 1389 – 1398, 2003.
- [62] M. Bahrami, M. K. Besharati Givi, K. Dehghani, and N. Parvin, “On the role of pin geometry in microstructure and mechanical properties of AA7075/SiC nano-composite fabricated by friction stir welding technique”, Mater. Des. 53, pp. 519 – 527, 2014.
- [63] G. Casalino, S. Campanelli, and M. Mortello, “Influence of Shoulder Geometry and Coating of the Tool on the Friction Stir Welding of Aluminium Alloy Plates”, Procedia Eng. 69, pp. 1541 – 1548, 2014.
- [64] P. K. Sahu and S. Pal, “Effect of Shoulder Diameter and Plunging Depth on Mechanical Properties and Thermal History of Friction Stir Welded Magnesium Alloy”, 5th Int. 26th All India Manuf. Technol. Des. Res. Conf. (AIMTDR 2014), no. Aimtdr, pp. 12 – 17, 2014.
- [65] K. Ramanjaneyulu, G. Madhusudhan Reddy, and A. Venugopal Rao, “Role of Tool Shoulder Diameter in Friction Stir Welding: An Analysis of the Temperature and Plastic Deformation of AA 2014 Aluminium Alloy”, Trans. Indian Inst. Met. 67 (5), pp. 769 – 780, 2014.
- [66] G. Padmanaban and V. Balasubramanian, “Selection of FSW tool pin profile, shoulder diameter and material for joining AZ31B magnesium alloy - An experimental approach”, Mater. Des. 30 (7), pp. 2647 – 2656, 2009.
- [67] S. Malarvizhi and V. Balasubramanian, “Influences of tool shoulder diameter to plate thickness ratio (D/T) on stir zone formation and tensile properties of friction stir welded dissimilar joints of AA6061 aluminum-AZ31B magnesium alloys”, Materials and Design 40, pp. 453 – 460, 2012.
- [68] S. Hirasawa, H. Badarinarayan, K. Okamoto, and T. Tomimura, “Analysis of effect of tool geometry on plastic flow during friction stir spot welding using particle method”, J. Mater. Process. Tech. 210 (11), pp. 1455 – 1463, 2010.
- [69] H. Badarinarayan, Y. Shi, X. Li, and K. Okamoto, “International Journal of Machine Tools & Manufacture Effect of tool geometry on hook formation and static strength of friction stir spot welded aluminum 5754-O sheets”, Int. J. Mach. Tools Manuf. 49 (11), pp. 814 – 823, 2009.
- [70] I. Z. Radisavljevic, A. B. Zivkovic, V. K. Grabulov, N. A. Radovic, “Influence of pin geometry on mechanical and structural properties of butt friction stir welded 2024-T351 aluminum alloy”, pp. 323 – 330, 2014.
- [71] M. Azizieh, A. H. Kokabi, and P. Abachi, “Effect of rotational speed and probe profile on microstructure and hardness of AZ31 / Al 2 O 3 nanocomposites fabricated by friction stir processing”, Mater. Des. 32 (4), pp. 2034 – 2041, 2011.
- [72] G. Faraji and P. Asadi, “Characterization of AZ91 / alumina nanocomposite produced by FSP”, Mater. Sci. Eng. A 528 (6), pp. 2431 – 2440, 2011.
- [73] M. Ilangovan, S. R. Boopathy, and V. Balasubramanian, “Effect of tool pin profile on microstructure and tensile properties of friction stir welded dissimilar AA 6061 e AA 5086 aluminium alloy joints”, Def. Technol. 11 (2), pp. 174 – 184, 2015.
- [74] M. Rezaee, M. Farahani, S. Amir, and D. Alavi, “Investigation on the effects of tool geometry on the microstructure and the mechanical properties of dissimilar friction stir welded polyethylene and polypropylene sheets”, J. Manuf. Process., vol. 26, pp. 269 – 279, 2017.
- [75] K. Colligan, “Material Flow Behavior during Friction Stir Welding of Aluminum”, no. July, pp. 229 – 237, 1999.
- [76] M. Guerra, C. Schmidt, J. C. Mcclure, L. E. Murr, and A. C. Nunes, “Flow patterns during friction stir welding”, 49, pp. 95 – 101, 2003.
- [77] X. Cao and M. Jahazi, “Effect of welding speed on the quality of friction stir welded butt joints of a magnesium alloy”, Mater. Des. 30 (6), pp. 2033 – 2042, 2009.
- [78] S. M. Chowdhury, D. L. Chen, S. D. Bhole, and X. Cao, “Effect of pin tool thread orientation on fatigue strength of friction stir welded AZ31B-H24 Mg butt joints”, Procedia Eng. 2 (1), pp. 825–833, 2010.
- [79] T. U. Seidel and A. P. Reynolds, “Visualization of the Material Flow in AA2195 Friction-Stir Welds Using a Marker Insert Technique”, 32, no. November, pp. 7 – 8, 2001.
- [80] M. Fairman, N. Afrin, D. L. Chen, X. Cao, and M. Jahazi, “Microstructural evaluation of friction stir processed {AZ31B-H24} magnesium alloy,” Can. Metall. Q. 46, no. April, pp. 425 – 432, 2007.
- [81] A. Kumar and P. Biswas, “Effect of tool pin profile on the material flow characteristics of AA6061”, J. Manuf. Process. 26, pp. 382 – 392, 2017.
- [82] K. P. Mehta and V. J. Badheka, “Effects of Tilt Angle on Properties of Dissimilar Friction Stir Welding Copper to Aluminum,” Mater. Manuf. Process. 31, no. January 2015, pp. 37 – 41, 2014.
- [83] R. A. Prado, L. E. Murr, K. F. Soto, and J. C. McClure, “Self-optimization in tool wear for friction-stir welding of Al 6061+20% Al2O3MMC”, Mater. Sci. Eng. A 349 (1–2), pp. 156 – 165, 2003.
- [84] K. R. Seighalani, M. K. B. Givi, A. M. Nasiri, and P. Bahemmat, “Investigations on the Effects of the Tool Material, Geometry, and Tilt Angle on Friction Stir Welding of Pure Titanium”, 19, no. October, pp. 955 – 962, 2010.
- [85] Z. W. Chen and S. Cui, “On the forming mechanism of banded structures in aluminium alloy friction stir welds”, 58, pp. 417 – 420, 2008.
- [86] W. International, L. M. Welding, R. Jl, and I. Technology, “Mechanical properties of friction stir welded 6061 aluminium”, 18 (2), pp. 95 – 102, 2004.
- [87] Barlas, Z., Ozsarac, U. “Effects of FSW Parameters on Joint Properties of AlMg3 Alloy,” Weld. J. 91 (1), pp. 16 – 22, 2012.
- [88] M. H. Tolephih, H. M. Mahmood, and H. H. Esam, “Effect of tool offset and tilt angle on weld strength of butt joint friction stir welded specimens of AA2024 aluminum alloy welded to commercial pure cupper”, 3 (4), 2013.
- [89] M. Elyasi, H. A. Derazkola, M. Hosseinzadeh, “Investigations of tool tilt angle on properties friction stir welding of A441 AISI to AA1100 aluminium,” Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 230 (7), pp. 1234–1241, 2016.
- [90] J. Wang, J. Su, R. S. Mishra, R. Xu, and J. A. Baumann, “Tool wear mechanisms in friction stir welding of Ti-6Al-4V alloy,” Wear 321, pp. 25 – 32, 2014.
- [91] M. Zhao, Z. Zhou, Q. Ding, M. Zhong, and K. Arshad, “Effect of rare earth elements on the consolidation behavior and microstructure of tungsten alloys”, Int. J. Refract. Met. Hard Mater. 48, pp. 19 – 23, 2015.
- [92] Klingensmith, A. A. R. M. S., Dupont, J. N. “Microstructural Characterization of a Double-Sided Friction Stir Weld on a Superaustenitic Stainless Steel”, Weld. Res., pp. 77 – 86, 2005.
- [93] A. P. Reynolds, W. Tang, M. Posada, and J. Deloach, “Friction stir welding of DH36 steel”, 8 (6), 2003.
- [94] C. D. Sorensen and A. L. Stahl, “Experimental Measurements of Load Distributions on Friction Stir Weld Pin Tools”, 38, no. June, pp. 451 – 459, 2007.
- [95] A. Arora, M. Mehta, A. De, and T. Debroy, “Load bearing capacity of tool pin during friction stir welding”, Int. J. Adv. Manuf. Technol. 61 (9–12), pp. 911 – 920, 2012.
- [96] H. J. Liu, J. C. Feng, H. Fujii, and K. Nogi, “Wear characteristics of a WC-Co tool in friction stir welding of AC4A+30 vol%SiCp composite”, Int. J. Mach. Tools Manuf., 45 (14), pp. 1635 – 1639, 2005.
- [97] Manvatkar, V. D., Arora, A., Debroy, T. “Neural network models of peak temperature, torque, traverse force, bending stress and maximum shear stress during friction stir welding”, 17 (6), pp. 460 – 466, 2012.
- [98] Khandkar, M. Z. H., Khan, J. A., Reynolds, A. P. “Prediction of temperature distribution and thermal history during friction stir welding : input torque based model”, Science and Technology of Welding & Joining 8(3), pp. 165–174, 2003.
- [99] Trimble, D., Monaghan, J., O’Donnell, G. E., Donnell, G. E. O. “Force generation during friction stir welding of AA2024-T3,” CIRP Ann. - Manuf. Technol. 61 (1), pp. 9 – 12, 2012.
- [100] DebRoy, T., De, A., Bhadeshia, H. K. D. H., Manvatkar, V. D., Arora, A. “Tool durability maps for friction stir welding of an aluminium alloy”, Proc. R. Soc. A Math. Phys. Eng. Sci. 468 (2147), pp. 3552 – 3570, 2012.
- [101] de Saracibar, C. A. M. Chiumenti, Cervera, M., Dialami, N., and Seret, A. “Computational Modeling and Sub-Grid Scale Stabilization of Incompressibility and Convection in the Numerical Simulation of Friction Stir Welding Processes”, Arch. Comput. Methods Eng. 21 (1), pp. 3 – 37, 2014.
- [102] Su, H., Song, C., Bachmann, M., M. Rethmeier, M. “Numerical modeling for the effect of pin profiles on thermal and material flow characteristics in friction stir welding”, J. Mater. 77, pp. 114 – 125, 2015.
- [103] Buchibabu, V., Reddy, G. M., De, A. “Probing torque, traverse force and tool durability in friction stir welding of aluminum alloys”, J. Mater. Process. Technol., 241, pp. 86 – 92, 2017.
- [104] Kumar, S. “ScienceDirect Ultrasonic assisted friction stir processing of 6063 aluminum alloy”, Arch. Civ. Mech. Eng. 16 (3), pp. 473 – 484, 2016.