Have a personal or library account? Click to login
Approximate Calculation of the Natural Oscillation Frequency of the Vibrating Table in Inter-Resonance Operation Mode Cover

Approximate Calculation of the Natural Oscillation Frequency of the Vibrating Table in Inter-Resonance Operation Mode

Open Access
|Dec 2021

References

  1. [1] Ruchynskyi, M., Nazarenko, M., Pereginets, I., Kobylianskyi, O., Kisała, P., Abenov, A., Amirgaliyeva, Z. “Simulation and development of energy-efficient vibration machines operating in resonant modes“, Przegląd Elektrotechniczny 1(4), pp. 62 – 66, 2019. DOI: 10.15199/48.2019.04.11
  2. [2] Lanets, O., Maistruk, P., Borovets, V., Derevenko, I. “Adjustment of parameters of three – mass interresonant vibrating machines with an inertial exciters“, Industrial Process Automation in Engineering and Instrumentation 53, pp. 13 – 22, 2019. DOI: 10.23939/istcipa2019.53.013
  3. [3] Lanets, O., Kachur, O. “Identification of ways to further improve of highly effective interresonance oscillatory systems“, Industrial Process Automation in Engineering and Instrumentation 51, pp. 62 – 65, 2017.
  4. [4] Lanets, O., Kachur, O., Borovets, V., Dmyterko, P., Derevenko, I., Zvarich, A. “Establishment of the original frequency of the continual section of the interreson research machine Rayleigh–Ritz method“, Industrial Process Automation in Engineering and Instrumentation 54, pp. 5 – 15, 2020. DOI: 10.23939/istcipa2020.54.005
  5. [5] Chikh, A. “Free vibration analysis of simply supported P-FGM nanoplate using a nonlocal four variables shear deformation plate theory“, Strojnícky časopis – Journal of Mechanical Engineering 69(4), pp. 9 – 24, 2019. DOI: 10.2478/scjme-2019-0039
  6. [6] Murin, J., Aminbaghai, M., Hrabovsky, J. “Elastostatic Analysis of the Spatial FGM Structures“, Strojnícky časopis – Journal of Mechanical Engineering 65(1), pp. 27 – 56, 2015. DOI: 10.1515/scjme-2016-0003
  7. [7] Taehyun, K., Usik, L. “Vibration Analysis of Thin Plate Structures Subjected to a Moving Force Using Frequency-Domain Spectral Element Method“, Shock and Vibration Vol. 2018, pp. 1 – 27, 2018. DOI: 10.1155/2018/1908508
  8. [8] Sharma, A. K., Sharma, P., Chauhan, P. S., Bhadoria, S. S. “Study on Harmonic Analysis of Functionally Graded Plates Using Fem“, International Journal of Applied Mechanics and Engineering 23 (4), pp. 941 – 961, 2018. DOI: 10.2478/ijame-2018-0053
  9. [9] Zhao, X., Lee, Y. Y., Liew, K. M. “Free vibration analysis of functionally graded plates using the element-free kp-Ritz method“, Journal of Sound and Vibration 319 (3-5), pp. 918 – 939, 2009. DOI: 10.1016/j.jsv.2008.06.025
  10. [10] Saeed, A., Hassan, H., Wael E. “Vibration attenuation using functionally graded material“, World Academy of Science, Engineering and Technology 7(6), pp. 1111 – 1120, 2013. DOI: 10.5281/zenodo.1057221
  11. [11] Reddy, J. N. “Theory and Analysis of Elastic Plates and Shells“, 2-nd ed., CRC Press, Boca Raton, USA, 2007. ISBN 9780849384158, DOI: 10.1201/9780849384165
  12. [12] Timoshenko S. P., Woinowsky-Krieger S. “Theory of Plates and Shells“, 2-nd ed., McGraw-Hill, New York, USA, 1959. ISBN 0-07-064779-8
  13. [13] Bochkarev, A. “Influence of boundary conditions on stiffness properties of a rectangular nanoplate“, Procedia Structural Integrity 6, pp. 174 – 181, 2017. DOI: 10.1016/j.prostr.2017.11.027
  14. [14] Mahi, A., Adda Bedia, E.A., Tounsi, A. “A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates“, Applied Mathematical Modelling 39 (9), pp. 2489 – 2508, 2015. DOI: 10.1016/j.apm.2014.10.045
  15. [15] Vescovini, R., Dozio, L., D’Ottavio, M., Polit, O. “On the application of the Ritz method to free vibration and buckling analysis of highly anisotropic plates“, Composite Structures 192, pp. 460 – 474, 2018. DOI: 10.1016/j.compstruct.2018.03.017
  16. [16] Kozbur H., Shkodzinsky O., Kozbur I., Gashchyn N. “Prediction of the boundary states for thin-walled axisymmetric shells under internal pressure and tension loads“, Strojnícky časopis – Journal of Mechanical Engineering 70(1), pp. 57 – 68, 2020. DOI: 10.2478/scjme-2020-0006
  17. [17] Arvin, H. “The Flapwise Bending Free Vibration Analysis of Micro-rotating Timoshenko Beams Using the Differential Transform Method“, Journal of Vibration and Control 24 (20), pp. 4868 – 4884, 2018. DOI: 10.1177/1077546317736706
  18. [18] Chen, Y., Zhang, J., Zhang, H. “Free vibration analysis of rotating tapered Timoshenko beams via variational iteration method“, Journal of Vibration and Control 23 (2), pp. 220 – 234, 2017. DOI: 10.1177/1077546315576431
  19. [19] Konieczny, M., Achtelik, H., Gasiak, G. “Research of maximum stress zones in circular plates with loades concentrated force“, Strojnícky časopis – Journal of Mechanical Engineering 70 (2), pp. 77 – 90, 2020. DOI: 10.2478/scjme-2020-0022
  20. [20] Hlavaty, M., Starek, L., Musil, M., Hučko B. “Ultrasonic Defect Detection of Structural Plates Using Quasi-Rayleigh Waves“, Strojnícky časopis – Journal of Mechanical Engineering 67 (2), pp. 37 – 50, 2017. DOI: 10.1515/scjme-2017-0016
  21. [21] Ponomarev, S. “Strength calculations in mechanical engineering“, 3-rd ed., Mashgiz, Moscow, USSR, 1959.
DOI: https://doi.org/10.2478/scjme-2021-0026 | Journal eISSN: 2450-5471 | Journal ISSN: 0039-2472
Language: English
Page range: 151 - 166
Published on: Dec 7, 2021
Published by: Slovak University of Technology in Bratislava
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Maistruk Pavlo, Lanets Oleksii, Stupnytskyy Vadym, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.