Have a personal or library account? Click to login
Comparision of Dominant Features Identification for Tool Wear in Hard Turning of Inconel 718 by Using Vibration Analysis Cover

Comparision of Dominant Features Identification for Tool Wear in Hard Turning of Inconel 718 by Using Vibration Analysis

Open Access
|Dec 2019

References

  1. [1] Ezugwu, E. O. “Key improvements in the machining of difficult to cut aerospace superalloys”, International Journal of Machine Tools and Manufacture 45 (12–13), pp. 1353 – 1367, 2005. DOI: 10.1016/j.ijmachtools.2005.02.003
  2. [2] Olovsjo, S., Nyborg, L. “Influence of micro structure on wear behavior of uncoated WC tools in turning of Alloy718 and Waspalloy”, Wear 282–283, pp. 12 – 21, 2012. DOI: 10.1016/j.wear.2012.01.004
  3. [3] Xiaozhi, C., Beizhi, L. “AE method for tool condition monitoring based on wavelet analysis”, International Journal of Advanced Manufacturing Technology 33 (9), pp. 968 – 976, 2007. DOI: 10.1007/s00170-006-0523-5
  4. [4] Scheffer, C., Kratz, H., Heyns, S., Klocke, F. “Develpoment of tool wear monitoring system for hard turning”, International Journal of Machine Tools and Manufacture 43 (10), pp. 973 – 985, 2003. DOI: 10.1016/S0890-6955(03)00110-X
  5. [5] Kurada, S., Bradley, C. “A review of machine vision sensors for tool condition monitoring”, Computers in Industry 34 (1), pp. 55 – 72, 1997. DOI: 10.1016/S0166-3615(96)00075-9
  6. [6] Kakade, S., Vijayaraghavan, L., Krishnamurthy, R. “Monitoring of tool status using intelligent acoustic emission sensing and decision based neural network”, IEEE, pp. 25 – 29, 1995. DOI: 10.1109/IACC.1995.465873
  7. [7] Lalta, P., Rahul, K. “Study on Breaking Load of Single Lap Joint Using Hybrid Joining Techniques for Alloy Steel AISI 4140 and Mild Steel: Taguchi and Neural Network Approach”, Strojnícky časopis – Journal of Mechanical Engineering 68 (1), pp. 51 – 60, 2018. DOI: 10.2478/scjme-2018-0005
  8. [8] Milesich, T., Danko, J., Bucha, J. “Neural Networks - A Way to Increase the Fuel Efficiency of Vehicles”, Strojnícky časopis – Journal of Mechanical Engineering 68 (1), pp. 81 – 88, 2018. DOI: 10.2478/scjme-2018-0008
  9. [9] Siddhpura, M., Siddhpura, A., Bhave, S. “Vibration as a parameter for monitoring the health of precision machine tools”, In: Conference, International conference on frontiers in design and manufacturing engineering, Coimbatore (India). Macmillan, India, 2008.
  10. [10] Dan, L., Mathew, J. “Tool wear and failure monitoring techniques for turning—a review”, International Journal of Machine Tools and Manufacture 30 (4), pp. 579 – 598, 1990. DOI: 10.1016/0890-6955(90)90009-8
  11. [11] Rao, S.B. “Tool wear monitoring through the dynamics of stable turning”, J Eng Ind 108 (3), pp. 183 – 190, 1986. DOI: 10.1115/1.3187062
  12. [12] Weller, E. J., Schrier, H. M., Weichbrodt, B. “What sound can be expected from worn tool?”, J Eng Ind 91(3), pp. 525 – 534, 1969. DOI: 10.1115/1.3591621
  13. [13] Del Taglia, A., Portunato, S., Toni, P. “An approach to online measurement of tool wear by spectrum analysis”, In: Proc 17th international MTDR conference 7, pp. 141 – 148, 1976. DOI: 10.1007/978-1-349-81484-8_17
  14. [14] Pandit, S.M., Kashou, S. “A data dependent system strategy of on-line tool wear sensing”, J Eng Ind 104 (3), pp. 217 – 223, 1982. DOI: 10.1115/1.3185822
  15. [15] Pandit, S. M., Kashou, S. “Variation in friction coefficient with tool wear”, Wear 84 (1), pp. 65 – 79, 1983. DOI: 10.1016/0043-1648(83)90119-9
  16. [16] Jiang, C. Y., Zhang, Y. Z., Xu, H. J. “In-Process Monitoring of Tool Wear Stage by the Frequency Band - Energy Method”, CIRP Annals 36 (1), pp. 45 – 48, 1987. DOI: 10.1016/S0007-8506(07)62550-5
  17. [17] Teti, R., Jemielniak, K., O’Donnell, G., Dornfeld, D. “Advanced monitoring of machining operations”, CIRP Annals 59 (2), pp. 717 – 739, 2010. DOI: 10.1016/j.cirp.2010.05.010
  18. [18] Lu, M. – C., Kannatey – Asibu, E. Jr. “Analysis of Sound Signal Generation Due to Flank Wear in Turning”, J.. Manuf. Sci. Eng. 124 (4), pp. 799 – 808, 2002. DOI: 10.1115/1.1511177
  19. [19] Alonso, F. J., Salgado, D. R. “Analysis of the structure of vibration signals for tool wear detection”, Mechanical Systems and Signal Processing 22 (3), pp. 735 – 748, 2008. DOI: 10.1016/j.ymssp.2007.09.012
  20. [20] Rajesh, V. G., Narayanan Namboothiri, V. N. “Flank wear detection of cutting tool inserts in turning operation: application of nonlinear time series analysis”, Soft Compute 14, pp. 913 – 919, 2010. DOI: 10.1007/s00500-009-0466-5
  21. [21] Ding, F., He, Z. “Cutting tool wear monitoring for reliability analysis using proportional hazards model”, International Journal of Advanced Manufacturing Technology 57 (5 – 8), pp. 565–574, 2011. DOI: 10.1007/s00170-011-3316-4
DOI: https://doi.org/10.2478/scjme-2019-0038 | Journal eISSN: 2450-5471 | Journal ISSN: 0039-2472
Language: English
Page range: 1 - 8
Published on: Dec 5, 2019
Published by: Slovak University of Technology in Bratislava
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2019 Dasari Kondala Rao, Kolla Srinivas, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.