Have a personal or library account? Click to login
Investigation of Defect Effects on Adhesively Bonded Joint Strength Using Cohesive Zone Modeling Cover

Investigation of Defect Effects on Adhesively Bonded Joint Strength Using Cohesive Zone Modeling

Open Access
|Dec 2018

References

  1. [1] M. J. Lee, T. M. Cho, W. S. Kim, B. C. Lee, J. J. Lee. Determination of cohesive parameters for a mixed-mode cohesive zone model. International Journal of Adhesion and Adhesives 2010 (30), No. 5, pp. 322-328.
  2. [2] Y. H. Lai, M. D. Rakestraw, D. A. Dillard. The cracked lap shear specimen revisited-a closed form solution. International Journal of Solids and Structures 1996 (33), No. 12, pp. 1725-1743.
  3. [3] M. Goland, E. Reissner. The stresses in cemented joints. Journal of Applied Mechanics 1944 (66), pp. 17-27.
  4. [4] F. Szepe. Strength of adhesive-bonded lap joints with respect to change of temperature and fatigue. Experimental Mechanics 1966 (6), No. 5, pp. 280-286.
  5. [5] L. J. Hart-Smith. Adhesive-bonded single-lap joints. NASA Technical Report CR-112236. Hampton, USA: Langley Research Centre, 1973.
  6. [6] J. Pirvics. Two dimensional displacement-stress distributions in adhesive bonded composite structures. Journal of Adhesion 1974 (6), No. 3, pp. 207-228.
  7. [7] S. K. Panigrahi, B. Pradhan. Three dimensional failure analysis and damage propagation behavior of adhesively bonded single lap joints in laminated FRP composites. Journal of Reinforced Plastics and Composites 2007 (26), No. 2, pp. 183-201.
  8. [8] M. Venkateswara Rao, K. Mohana Rao, V. Rama Chandra Raju, V. Bala Krishna Murthy, V. V. Sridhara Raju. Three-dimensional finite element analysis of adhesively bonded single lap joints in laminated FRP composites subjected to combined loading with C-F end conditions. Journal of Mechanical Engineering - Strojnícky časopis 2009 (60), No. 5-6, pp. 277-288.
  9. [9] G. R. Wooley, D. R. Carver. Stress concentration factors for bonded lap joint. Journal of Aircraft 1971 (8), pp. 817-820.
  10. [10] M. Y. Tsai, J. Morton. An evaluation of analytical and numerical solutions to the singlelap joint. International Journal of Solids and Structures 1994 (31), No. 18, pp. 2537-2563.
  11. [11] L. F. M. Da Silva, R. D. S. G. Campilho. Advances in Numerical Modelling of Adhesive Joints. Heidelberg, Springer, 2011.
  12. [12] R. D. S. G. Campilho, M. D. Banea, J. A. B. P. Neto, L. F. M. Da Silva. Modelling adhesive joints with cohesive zone models: effect of the cohesive law shape of the adhesive layer. International Journal of Adhesion and Adhesives 2013 (44), pp. 48-56.
  13. [13] R. D. S. G. Campilho, M. F. S. F. De Moura, A. M. J. P. Barreto, J. J. L. Morais, J. J. M. S. Domingues. Fracture behaviour of damaged wood beams repaired with an adhesively-bonded composite patch. Composites Part A: Applied Science and Manufacturing 2009 (40), No.6-7, pp. 852-859.
  14. [14] P. B. Woelke, M. D. Shields, N. N. Abboud, J. W. Hutchinson. Simulations of ductile fracture in an idealized ship grounding scenario using phenomelogical damage and cohesive zone models. Computational Materials Science 2013 (80), pp. 79-95.
  15. [15] R. D. S. G. Campilho, M. D. Banea, J. A. B. P. Neto, L. F. M. Da Silva. Modelling of single-lap joints using cohesive zone models: effect of the cohesive parameters on the output of the simulations. Journal of Adhesion 2012 (88), No. 4-6, pp. 513-533.
  16. [16] R. D. S. G. Campilho, M. F. S. F. De Moura, D. A. Ramantani, J. J. L. Morais, J. J. M. S. Domingues. Buckling behaviour of carbon-epoxy adhesively-bonded scarf repairs. Journal of Adhesion Science and Technology 2009 (23), No. 10-11, pp. 1493-1513.
  17. [17] M. M. Abou-Hamda, M. M. Megahed, M. M. I. Hammouda. Fatigue crack growth in double cantilever beam specimen with an adhesive layer. Engineering Fracture Mechanics 1998 (60), No. 5-6, pp. 605-614.
  18. [18] R. D. S. G. Campilho, T. A. B. Fernandes. Comparative evaluation of single-lap joints bonded with different adhesives by cohesive zone modelling. Procedia Engineering 2015 (114), pp. 102-109.
  19. [19] G. Mancusi, F. Ascione. Performance at collapse of adhesive bonding. Composite Structures 2013 (96), pp. 256-261.
  20. [20] E. F. Karachalios, R. D. Adams, L. F. M. Da Silva. Strength of single lap joints with artificial defects. International Journal of Adhesion and Adhesives 2013 (45), pp. 69-76.
  21. [21] V. A. Maksimyuk, E. A. Storozhuk, I. S. Chernyshenko. Nonlinear deformation of thin isotropic and orthotropic shells of revolution with reinforced holes and rigid inclusions. International Applied Mechanics 2013 (49), No. 6, pp. 685-692.
  22. [22] V. N. Chekhov, S. V. Zakora. Stress concentration in a transversely isotropic spherical shell with two circular rigid inclusions. International Applied Mechanics 2011 (47), pp. 441-448.
  23. [23] I. S. Chernyshenko. Nonlinear deformation of isotropic and orthotropic shells with holes reinforced by a rigid elastic element. International Applied Mechanics 1989 (25), No. 1, pp. 54-59.
  24. [24] V. P. Shevchenko, S. V. Zakora. On the mutual influence of closely located circular holes with rigid contours in a spherical shell. Journal of Mathematical Sciences 2011 (174), pp. 322-330.
  25. [25] S. V. Zakora, V. N. Chekhov. Stress state of a transversely isotropic spherical shell with a rigid circular inclusion. International Applied Mechanics 2005 (41), No. 12, pp. 1384-1390.
  26. [26] J. D. Engerer, E. Sancaktar. The effects of partial bonding in load carrying capacity of single lap joints. International Journal of Adhesion and Adhesives 2011 (31), No. 5, pp. 373-379.
  27. [27] N. G. Berry, J. R. M. D’Almeida. The influence of circular centered defects on the performance of carbon-epoxy single lap joints. Polymer Testing 2002 (21), No. 4, pp. 373-379.
  28. [28] J. H. Park, J. H. Choi, J. H. Kweon. Evaluating the strengths of thick aluminumtoaluminum joints with different adhesive lengths and thicknesses. Composite Structures 2010 (92), No. 9, pp. 2226-2235.
  29. [29] T. T. Wang, F. W. Ryan, H. Schonhorn. Effect of bonding defects on shear strength in tension of lap joints having brittle adhesives. Journal of Applied Polymer Science 1972 (16), No. 8, pp. 1901-1909.
  30. [30] M. Olia, J. N. Rossettos. Analysis of adhesively bonded joints with gaps subjected to bending. International Journal of Solids and Structures 1996 (33), No. 18, pp. 2681-2693.
  31. [31] A. Chadegani, R. C. Batra. Analysis of adhesive-bonded single-lap joint with an interfacial crack and a void. International Journal of Adhesion and Adhesives 2011 (31), No. 6, pp. 455-465.
  32. [32] M. U. Uysala, U. Güvena. Bonded plate having orthotropic inclusion in adhesive layer under in-plane shear loading. Journal of Adhesion 2016 (92), No. 3, pp. 214-235.
  33. [33] L. Prasad, R. Khantwal. Study on breaking load of single lap joint using hybrid joining techniques for alloy steel AISI 4140 and mild steel: Taguchi and neural network approach. Journal of Mechanical Engineering - Strojnícky časopis 2018 (68), No. 1, pp. 51-60.
  34. [34] Abaqus 6.13 Analysis User’s Manual, 2012, Simulia. Dassault Systèmes.
  35. [35] A. Turon, C. G. Dávila, P. P. Camanho, J. Costa. An engineering solution for using coarse meshes in the simulation of delamination with cohesive zone models. NASA Technical Memorandum, Technical Report, NASA/TM-2005-213547, L-19109, 2005.
  36. [36] A. Corigliano. Formulation, identification and use of interface models in the numerical analysis of composite delamination. International Journal of Solids and Structures 1993 (30), No. 20, pp. 2779-2811.
  37. [37] P. P. Camanho, C. Davila, M. De Moura. Numerical simulation of mixed-mode progressive delamination in composite materials. Journal of Composite Materials 2003 (37), No. 16, pp. 1415-1438.
  38. [38] P. W. Harper, S. R. Hallett. Cohesive zone length in numerical simulations of composite delamination. Engineering Fracture Mechanics 2008 (75), No. 16, pp. 4774-4792.
  39. [39] M. L. Benzeggagh, M. Kenane. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Composites Science and Technology 1996 (56), No. 4, pp. 439-449.
  40. [40] K. N. Anyfantis, N. G. Tsouvalis. A 3D ductile constitutive mixed-mode model of cohesive elements for the finite element analysis of adhesive joints. Journal of Adhesion Science and Technology 2013 (27), No. 10, pp. 1146-1178.
  41. [41] K. N. Anyfantis, N. G. Tsouvalis. A novel traction-separation law for the prediction of the mixed mode response of ductile adhesive joints. International Journal of Solids and Structures 2012 (49), No. 1, pp. 213-226.
DOI: https://doi.org/10.2478/scjme-2018-0023 | Journal eISSN: 2450-5471 | Journal ISSN: 0039-2472
Language: English
Page range: 5 - 24
Published on: Dec 6, 2018
Published by: Slovak University of Technology in Bratislava
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2018 Jamal-Omidi Majid, Mohammadi Suki Mohammad Reza, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.