Have a personal or library account? Click to login
Effect of Non-Uniform Torsion on Elastostatics of a Frame of Hollow Rectangular Cross-Section Cover

Effect of Non-Uniform Torsion on Elastostatics of a Frame of Hollow Rectangular Cross-Section

Open Access
|May 2018

References

  1. [1] V. Z. Vlasov. Thin-walled elastic beams. National Science Foundation, Washington, 1961.
  2. [2] K. Roik, G. Sedlacek. Theorie der Wölbkrafttorsion unter Berücksichtigung der sekundären Schubverformungen - Analogiebetrachtung zur Berechnung des querbelasteten Zugstabes. Stahlbau 1966; 35, 43.
  3. [3] H. Rubin. Wölbkrafttorsion von Durchlaufträgern mit konstantem Querschnitt unter Berücksichtigung sekundärer Schubverformung. Stahlbau 2005; 74, Heft 11, 826.
  4. [4] EN 1993 - Eurocode 3: Design of steel structures, European Committee for Standardization (CEN) 2004.
  5. [5] ANSYS Swanson Analysis System, Inc., 201 Johnson Road, Houston, PA 15342/1300, USA.
  6. [6] RSTAB, Ingenieur - Software Dlubal GmbH, Tiefenbach 2006.
  7. [7] J. Murin, M. Aminbaghai, V. Kutis, V. Kralovic, V. Goga, HA. Mang. A new 3D Timoshenko finite beam element including non-uniform torsion of open and closed cross sections. Eng Struct 2014 (59), 153 – 160.
  8. [8] IC Dikaros, EJ Sapountzakis, AK Argyridi. Generalized warping effect in the dynamic analysis of beams of arbitrary cross section. J Sound Vib 2016 (369), 119 – 146.
  9. [9] M. Aminbaghai, J. Murin, J. Hrabovsky, HA. Mang. Torsional warping eigenmodes including the effect of the secondary torsion moment on the deformations. Eng Struct 2016 (106), 299 – 316.
  10. [10] IC Dikaros, EJ Sapountzakis, AK Argyridi. Generalized warping effect in the dynamic analysis of beams of arbitrary cross section. J Sound Vib 2016 (369), 119 – 146.
  11. [11] IN Tsipsis, EJ Sapountzakis. Generalized warping and distortional analysis of curved baems with isogeometric methods. Comp and Struct 2017 (191), 33 – 50.
  12. [12] J. Murin, V. Goga, M. Aminbaghai, J. Hrabovsky, T. Sedlar, HA. Mang. Measurement and modelling of torsional warping free vibrations of beams with rectangular hollow cross-sections. Eng Struct 2017 (136), 68 – 76.
  13. [13] M. Aminbaghai, J. Murin, G. Balduzzi, J. Hrabovsky, G. Hochreiner, HA. Mang. Second- order torsional warping theory considering the secondary torsion-moment deformation- effect. Eng Struct 2017 (147), 724 – 739.
  14. [14] IC Dikaros. Advanced beam theories for the analysis of beam structures. PhD Dissertation. School of Civil Engineering. National Technical University of Athens. Greece, 2016, pp. 379.
  15. [15] H. Rubin. Torsions-Querschnittswerte für rechteckige Hohlprofile nach EN 10210-2: 2006. Stahlbau, 76, Heft 1, 2007.
  16. [16] Wolfram Research, Inc., MATHEMATICA, Version 8.0, Champaign, IL, USA, 2010.
  17. [17] EN 1993 - Eurocode 3: Design of steel structures, European Committee for Standardization (CEN) 2004.
DOI: https://doi.org/10.2478/scjme-2018-0016 | Journal eISSN: 2450-5471 | Journal ISSN: 0039-2472
Language: English
Page range: 35 - 52
Published on: May 19, 2018
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2018 Justín Murín, Mehdi Aminbaghai, Vladimír Goga, Vladimír Kutiš, Juraj Paulech, Juraj Hrabovský, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.