Have a personal or library account? Click to login
Natural Fibers and Biopolymers Characterization: A Future Potential Composite Material Cover

Natural Fibers and Biopolymers Characterization: A Future Potential Composite Material

Open Access
|May 2018

References

  1. [1] H. P. Raturi, L. Prasad, M. Pokhriyal, V. Tirth. An Estimating the Effect of Process Parameters on Metal Removal Rate and Surface Roughness in WEDM of Composite Al6063/SiC/Al2O3 by Taguchi Method. Journal of Mechanical Engineering - Strojnícky časopis 2017 (67), No. 2, 25 - 36.
  2. [2] V. K. Patel, K. Rani, Mechanical and Wear Properties of Friction Stir Welded 0-6Wt%nAl2O3 Reinforced Al-13Wt% Si Composites. Journal of Mechanical Engineering -Strojnícky casopis 2017 (67), No. 1, 77 - 86.
  3. [3] D. D. Stokke, Q. Wu, G. Han. Introduction to Wood and Natural Fiber Composites. John Wiley & Sons, West Sussex, UK. 2014
  4. [4] T. Vaisanen, O. Das, L. Tomppo. A review On new bio-based constituents for natural fiber -polymer composites. Journal of Cleaner Production 2017 (149), 582 - 596.
  5. [5] M. Bassyouni, S. Waheed Ul Hasan. The use of rice Straw and husk fibers as reinforcements in composites. In: Faruk, O., Sain, M. (Eds.), Biofiber Reinforcement in Composite Materials. Woodhead Publishing, Cambridge, UK, 2015, 385-422.
  6. [6] Y. El-Shekeil, S. Sapuan, K. Abdan, E. Zainudin. Influence of fiber content on the mechanical and thermal properties of Kenaf fiber rein forced thermoplastic polyurethane composites. Mater. Des. 2012 (40), 299 - 303.
  7. [7] E. Zini, M. Scandola. Green composites: an overview. Polym. Compos. 2011 (12), 1905 - 1915.
  8. [8] M. Ramesh, K. Palanikumar, K. R. Hemachandra. Plant fibre based bio-composites: Sustainable and renewable green materials. Renewable and Sustainable Energy Reviews 2017 (79), 558 - 584.
  9. [9] K. F. Adekunle. Surface treatments of natural fibres- a review: Part1. Op. J. Org. Polym. Mat. 2015 (3), 41 - 46.
  10. [10] Biopolymer Production for (petro) chemical sector -IEA Technology Perspectives, IEA, 2008.
  11. [11] V. S. Sreenivasan, N. Rajini, A. Alavudeen, V. Arumugaprabu. Dynamic mechanical and thermo-gravimetric analysis of Sansevieria cylindrica/polyester composite: Effect of fiber length, fiber loading and chemical treatment. Composites Part B: Engineering 2015 (69), 76 - 86.
  12. [12] A. B. Nurfatimah, C. Y. Chee, L. A. Abdullah, C. T. Ratnam, N. A. Ibrahim. Thermal and dynamic mechanical properties of grafted kenaf filled poly (vinyl chloride)/ethylene vinyl acetate composites. Materials & Design (1980-2015) 2015 (65), 204 - 211.
  13. [13] T. Sullins, S. Pillay, A. Komus, H. Ning. Hemp fiber reinforced polypropylene composites: The effects of material treatments. Composites Part B: Engineering 2017 (114), 15 - 22.
  14. [14] E. Rojo, M. V. Alonso, M. Oliet, B. D. Saz-Orozco, F. Rodriguez. Effect of fiber loading on the properties of treated cellulose fiber-reinforced phenolic composites. Composites Part B: Engineering 2015 (68), 185 - 192.
  15. [15] M. Cai, H. Takagi, A. N. Nakagaito, L. Yan, G. IN. Waterhouse. Effect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites. Composites Part A: Applied Science and Manufacturing 2016 (90), 589 - 597.
  16. [16] S. Kocaman, M. Karaman, M. Gursoy, G. Ahmetli. Chemical and plasma surface modification of lignocellulose coconut waste for the preparation of advanced biobased composite materials. Carbohydrate polymers 2017 (159), 48 - 57.
  17. [17] G. C. M. Kumar, A study of short areca fibre reinforced PF composites. in: Proceedings of the World Congress on Engineering WCE , London, 2-4 July 2008, 2008.
  18. [18] N. H. Padmaraj, M. V. Kini, B. R. Pai, B. S. Shenoya. Development of Short Areca Fiber Reinforced Biodegradable Composite Material. Procedia Engineering 2013 (64), 966 - 972.
  19. [19] H. M. Akil, M. F. Omar, A. A. M. Mazuki, S. Safiee, Z. A. M. Ishak, A. A. Bakar. Kenaf fibre reinforced composites: a review. Mater Des. 2011 (32), 4107 - 4121.
  20. [20] M. Ramesh. Kenaf (Hibiscus cannabinus L.) fibre based bio-materials: a review on processing and properties. Prog Mater Sci 2016 (78 - 79), 1 - 92.
  21. [21] N. Venkateshwaran, A. Elayaperumal. Banana fibre reinforced polymer composites A Review. J Reinf Plast Compos 2010 (29), No. 10, 2387 - 2396.
  22. [22] A. Shahzad. Hemp fibre and its composites-A review. J Compos Mater 2012 (46), 973 -986.
  23. [23] W. B. Kusumaningrum, S. S. Munawar. Prospect of bio-pelletas an alternative energy to substitute solid fuel based. Energy Procedia 2014 (47), 303 - 309.
  24. [24] M. K. Gupta, R. K. Srivastava, H. Bisaria. Potential of jute fibre reinforced polymer composites: a review. Int J Fib Tex Res. 2015 (5), 30 - 38.
  25. [25] P. Zakikhani, R. Zahari, M. T. H. Sultan, D. L. Majid. Bamboofibre extraction and its reinforced polymer composite material. Int J Chem. Mol. Nucl. Mater Metall Eng. 2014 (8), No. 4, 315 - 318.
  26. [26] S. Shinoj, R. Viswanathan, S. Panigrahi, M. Kochubabu. Oil palmfibre (OPF) and its composites: a review. Ind Crop Prod. 2011 (33), 7 - 22.
  27. [27] K. Nanthaya, T. Amornsakchai. A new approach to ‘‘Greening’’ plastic composites using pineapple leaf waste for performance and cost effectiveness. Materials and Design 2014 (55), 292 - 299.
  28. [28] M. Pokhriyal, L. Prasad, H. P. Raturi. An experimental investigation on mechanical and tribological properties of Himalayan nettle fiber composite. Journal of Natural Fibers 2017, 1 - 10. DOI: 10.1080/15440478.2017.1364202.
  29. [29] E. M. Fernandes, J. F. Mano, R. L. Reis. Hybrid cork-polymer composites containing sisal fibre: Morphology, effect of the fibre treatment on the mechanical properties and tensile failure prediction. Composite Structures 2013 (105), 153 - 162.
  30. [30] U. Nirmal, M. M. H. Jamil, M. Ahmad. A review on tribological performance of natural fibre polymeric composites. Tribol Inter. 2015 (83), 77 - 104.
  31. [31] F. Ahmad, H. S. Choi, M. K. Park. A review: natural fiber composites selection in view of mechanical, light weight, and economic properties. Macro Mater Eng. 2015 (300), 10 - 24.
  32. [32] D. B. Dittenber, H. V. S. GangaRao. Critical review of recent publications on use of natural composites in infrastructure. Composites Part A 2011 (43), No. 8, 1419 - 1429.
  33. [33] B. C. Mitra. Environment Friendly Composite Materials: Biocomposites and Green Composites. Defence Science Journal 2014 (64), No. 3, 244 - 261. DOI: 10.14429/dsj.64.7323.
  34. [34] P. Chen, C. Lu, Q. Yu, Y. Gao, J. Li, X. Li. Influence of fiber wettability on the interfacial adhesion of continuous fiber-reinforced PPESK composite. J Appl Polym Sci 2006 (102), No. 3, 2544 - 2551.
  35. [35] X.F. Wu, Y.A. Dzenis. Droplet on a fiber: geometrical shape and contact angle. Acta Mech. 2006 (185), No. 3 - 4, 215 - 225.
  36. [36] Q. Bénard, M. Fois, M. Grisel. Roughness and fibre reinforcement effect onto wettability of composite surfaces. Appl Surf Sci. 2007 (253), No. 10, 4753 - 4758.
  37. [37] E. Sinha, S. Panigrahi. Effect of plasma treatment on structure, wettability of jute fiber and flexural strength of its composite. J Compos Mater. 2009 (43), No. 17, 1791 - 1802.
  38. [38] Z. T. Liu, C. Sun, Z. W. Liu, J. Lu. Adjustable wettability of methyl methacrylate modified ramie fiber. J Appl Polym Sci. 2008 (109), No. 5, 2888 - 2894.
  39. [39] S. Qian, H. Wang, E. Zarei, K. Sheng. Effect of hydrothermal pretreatment on the properties of moso bamboo particles reinforced polyvinyl chloride composites. Composites Part B: Engineering 2015 (82), 23 - 29.
  40. [40] S. Kocaman, M. Karaman, M. Gursoy, G. Ahmetli. Chemical and plasma surface modification of lignocellulose coconut waste for the preparation of advanced biobased composite materials. Carbohydrate polymers 2017 (159), 48 - 57.
  41. [41] Anonymous. Bioplastics in automotive applications, Bioplastics Mag. 2007 (2), No. 1, 4 - 8.
  42. [42] S. Ochi, Mechanical properties of kenaf fibers and kenaf/ PLA composites. Mech. Mater. 2008 (40), No. 4 - 5, 446 - 452.
  43. [43] P. Pan, B. Zhu, W. Kai, S. Serizawa, M. Iji, Y. Inoue. Crystallization behavior and mechanical properties ofbio-basedgreen composites based on poly (lactide) and kenaf fiber. J. Appl. Polym. Sci. 2007 (105), No. 3, 1511 - 1520.
  44. [44] R. Tokoro, D. M. Vu, K. Okubo, T. Tanaka, T. Fujii, T. Fujiura. How to improve mechanical propertiesofpoly lactic acid with bamboo fibers. J. Mater. Sci. 2008 (43), No. 2, 775 - 787.
  45. [45] R. Masirek, Z. Kulinski, D. Chionna, E. Piorkowska, M. Pracella. Composites of poly (L-lactide) with hemp fibers: Morphology and thermal and mechanical properties. J. Appl. Polym. Sci. 2007 (105), No. 1, 255 - 268.
  46. [46] P. J. Barham, A. Leller. The relationship between microstructure and mode of fracture in polyhydroxybutyrate. J. Polym. Sci. Pol. Phys. 1986 (24), No. 1, 69 - 77.
  47. [47] K. Das, D. Ray, C. Banerjee, N. R. Bandopadhyay, S. Sahoo, A. K. Mohanty, M. Misra. Physio mechanical and thermal properties of jute-nanofiber-reinforced bio copolyester composites. Ind. Eng.Chem.Res. 2010 (49), No. 6, 2775 - 2782.
  48. [48] X. Huang, A. N. Netravali. Characterization of flaxfiber reinforced soy protein resin based green composites modified with nano-clay particles. Compos. Sci. Technol. 2007 (67), No. 10, 2005 - 2014.
  49. [49] D. U. Shah, D. Porter, F. Vollrath. Can silk become an effective reinforcing fibre? A property comparison with flax and glass reinforced composites. Compos Sci Technol. 2014 (101), 173 - 183.
  50. [50] A. Mustafa, M. F. B. Abdollah, F. F. Shuhimi, N. Ismail, H. Amiruddin, N. Umehara. Selection and verification of kenaf fibres as an alt ernative friction material using Weighted Decision Matrix method. Mater Des. 2015 (67), 577 - 582.
  51. [51] I. M. De Rosa, J. M. Kenny, D. Puglia, C. Santulli, F. Sarasini. Tensile behaviour of New Zealand flax (Phormium tenax) fibers. J Reinf Plast Compos. 2010 (29), No. 23, 3450 - 3454.
  52. [52] D. B. Dittenber, H. V. S. GangaRao. Critical review of recent publications on use of natural composites in infrastructure. Composites Part A 2011 (43), No. 8, 1419 - 1429.
  53. [53] E. Zini, M. Scandola. Green composites: an overview. Polym Compos. 2011 (32), No. 12, 1905 - 1915.
  54. [54] N. Reddy, Q. R. Jiang, Y.Q. Yang. Biocompatible natural silk fibers from Argema mittrei. J Biobased Mater Bioenergy 2012 (6), No. 5, 558 - 563.
  55. [55] T. M. Le, K. L. Pickering. The potential of harakeke fibre as reinforcement in polymer matrix composites including modelling of long harakeke fibre composite strength. Composites Part A: Applied Science and Manufacturing 2015 (76), 44 - 53.
  56. [56] K. Pickering. Properties and performance of natural-fibre composites. Cambridge, England: Woodhead Publishing, 2008.
  57. [57] S. Cheng, K. T. Lau, T. Liu, Y. Zhao, P. M. Lam, Y. Yin. Mechanical and thermal properties of chicken feather fiber/PLA green composites. Composites Part B: Engineering 2009 (40), No. 7, 650 - 654.
  58. [58] M. P. Gashti. Effect of colloidal dispersion of clay on some properties of wool fiber. J Dispersion Sci Technol. 2013 (34), No. 6, 853 - 858.
  59. [59] M. Niu, X. Liu, J. Dai, W. Hou, L. Wei, B. Xu. Molecular structure and properties of wool fiber surface-grafted with nano-antibacterial materials. Spectrochim Acta Part A Mol Biomol Spectrosc. 2012 (86), 289 - 293.
  60. [60] M. Zhan, R. P. Wool. Mechanical properties of chicken feather fibers. Polym Compos. 2011 (32), No. 6, 937 - 944.
  61. [61] M. A. Efendy, K. L. Pickering. Comparison of harakeke with hemp fibre as a potential reinforcement in composites. Composites Part A: Applied Science and Manufacturing 2014 (67), 259 - 267.
  62. [62] H. Y. Cheung, M. P. Ho, K. T. Lau, F. Cardona, D. Hui. Natural fibre-reinforced composites for bioengineering and environmental engineering applications. Composites Part B: Engineering 2009 (40), No. 7, 655 - 663.
  63. [63] L. Yan, N. Chouw, K. Jayaraman. Flax fibre and its composites-a review. Composites Part B: Engineering 2014 (56), 296 - 317.
  64. [64] G. A. Khan, M. Shaheruzzaman, M. H. Rahman, S. A. Razzaque, M. S. Islam, M. S. Alam. Surface modification of okra bast fiber and its physico-chemical characteristics. Fibers and polymers 2009 (10), No. 1, 65 - 70.
  65. [65] A. P. Mathew, K. Oksman, Z. Karim, P. Liu, S. A. Khan, N. Naseri. Process scale up and characterization of wood cellulose nanocrystals hydrolysed using bioethanol pilot plant. Industrial crops and products 2014 (58), 212 - 219.
  66. [66] Z. Karim, A. P. Mathew, M. Grahn, J. Mouzon, K. Oksman. Nanoporous membranes with cellulose nanocrystals as functional entity in chitosan: removal of dyes from water. Carbohydrate polymers 2014 (112), 668 - 676.
  67. [67] Z. Karim, S. Claudpierre, M. Grahn, K. Oksman, A. P. Mathew. Nanocellulose based functional membranes for water cleaning: Tailoring of mechanical properties, porosity and metal ion capture. Journal of Membrane Science 2016 (514), 418 - 428.
  68. [68] Z. N. Azwa, B. F. Yousif, A. C. Manalo, W. Karunasena. A review on the degradability of polymeric composites based on natural fibres. Materials & Design 2013 (47), 424 -442.
  69. [69] O. Faruk, A. K. Bledzki, H. P. Fink, M. Sain. Progress report on natural fiber reinforced composites. Macromolecular Materials and Engineering 2014 (299), No. 1, 9 - 26.
  70. [70] Z. Karim, A. P. Mathew, K. Oksman, M. Grahn. Fully biobased nanocomposite membranes: removal of heavy metals from polluted water. In Dissemination Workshop for the Nano4water Cluster: 23/04/2014-24/04/2014, 2014.
  71. [71] Z. Karim, A. P. Mathew, V. Kokol, J. Wei. Grahn, M. High-flux affinity membranes based on cellulose nanocomposites for removal of heavy metal ions from industrial effluents. RSC Advances 2016 (6), No. 25, 20644 - 20653.
  72. [72] Z. Karim, M. Hakalahti, T. Tammelin, A. Mathew, K. Oksman. Effect of in situ TEMPO surface functionalization of nanocellulose membranes on the adsorption of metal ions from aqueous solution. RSC Advances 2016
  73. [73] A. Etaati, H. Wang, S. Pather, Z. Yan, S. A. Mehdizadeh. 3D X-ray microtomography study on fibre breakage in noil hemp fibre reinforced polypropylene composites. Composites Part B: Engineering 2013 (50), 239 - 246.
  74. [74] S. H. Lee, S. Wang. Biodegradable polymers/bamboo fiber biocomposite with biobased coupling agent. Composites Part A: Applied Science and Manufacturing 2006 (37), No. 1, 80 - 91.
  75. [75] V. K. Thakur, M. K. Thakur, R. K. Gupta. Graft copolymers of natural fibers for green composites. Carbohydrate polymers 2014 (104), 87 - 93.
  76. [76] S. Alix, L. Lebrun, C. Morvan, S. Marais. Study of water behaviour of chemically treated flax fibres-based composites: A way to approach the hydric interface. Composites Science and Technology 2011 (71), No. 6, 893 - 899.
  77. [77] K. M. M. Rao, K. M. Rao. Extraction and tensile properties of natural fibers: Vakka, date and bamboo. Composite structures 2007 (77), No. 3, 288 - 295.
  78. [78] Y. Xie, C. A. Hill, Z. Xiao, H. Militz, C. Mai. Silane coupling agents used for natural fiber/polymer composites: A review. Composites Part A: Applied Science and Manufacturing 2010 (41), No. 7, 806 - 819.
  79. [79] E. M. Fernandes, J. F. Mano, R. L. Reis. Hybrid cork-polymer composites containing sisal fibre: morphology, effect of the fibre treatment on the mechanical properties and tensile failure prediction. Composite Structures 2013 (105), 153 - 162.
  80. [80] T. Yu, J. Ren, S. Li, H. Yuan, Y. Li. Effect of fiber surface-treatments on the properties of poly (lactic acid)/ramie composites. Composites Part A: Applied Science and Manufacturing 2010 (41), No. 4, 499 - 505.
  81. [81] A. Valadez-Gonzalez, J. M. Cervantes-Uc, R. Olayo, P. J. Herrera-Franco. Chemical modification of henequen fibers with an organosilane coupling agent. Composites Part B: Engineering 1999 (30), No. 3, 321 - 331.
  82. [82] N. Graupner, A. S. Herrmann, J. Müssig. Natural and man-made cellulose fibrereinforced poly (lactic acid) (PLA) composites: An overview about mechanical characteristics and application areas. Composites Part A: Applied Science and Manufacturing 2009 (40), No. 6, 810 - 821.
  83. [83] S. Ochi. Mechanical properties of kenaf fibers and kenaf/PLA composites. Mechanics of materials 2008 (40), No. 4, 446 - 452.
  84. [84] A. Memon, A. Nakai. Fabrication and mechanical properties of jute spun yarn/PLA unidirection composite by compression molding. Energy Procedia 2013 (34), 830 -838.
  85. [85] D. Liu, T. Zhong, P. R. Chang, K. Li, Q. Wu. Starch composites reinforced by bamboo cellulosic crystals. Bioresource technology 2010 (101), No. 7, 2529 - 2536.
  86. [86] J. L. Guimarães, F. Wypych, C. K. Saul, L. P. Ramos, K. G. Satyanarayana. Studies of the processing and characterization of corn starch and its composites with banana and sugarcane fibers from Brazil. Carbohydrate Polymers 2010 (80), No. 1, 130 - 138.
  87. [87] E. Bodros, I. Pillin, N. Montrelay, C. Baley. Could biopolymers reinforced by randomly scattered flax fibre be used in structural applications? Composites Science and Technology 2007 (67), No. 3, 462 - 470.
  88. [88] A. Le Duigou, J. M. Deux, P. Davies, C. Baley. PLLA/flax mat/balsa bio-sandwich manufacture and mechanical properties. Applied Composite Materials 2011 (18), No. 5, 421 - 438.
  89. [89] M. A. Sawpan, K. L. Pickering, A. Fernyhough. Effect of fibre treatments on interfacial shear strength of hemp fibre reinforced polylactide and unsaturated polyester composites. Composites Part A: Applied Science and Manufacturing 2011 (42), No. 9, 1189 - 1196.
  90. [90] C. S. Wu. Renewable resource-based composites of recycled natural fibers and maleated polylactide bioplastic: Characterization and biodegradability. Polymer Degradation and Stability 2009 (94), No. 7, 1076 - 1084.
  91. [91] M. Y. M. Zuhri, Z. W. Guan, W. J. Cantwell. The mechanical properties of natural fibre based honeycomb core materials. Composites Part B: Engineering 2014 (58), 1 - 9.
  92. [92] T. Alomayri, F. U. A. Shaikh, I. M. Low. Characterisation of cotton fibre-reinforced geopolymer composites. Composites Part B: Engineering 2013 (50), 1 - 6.
  93. [93] H. Ibrahim, M. Farag, H. Megahed, S. Mehanny. Characteristics of starch-based biodegradable composites reinforced with date palm and flax fibers. Carbohydrate polymers 2014 (101), 11 - 19.
  94. [94] N. H. Padmaraj, M. V. Kini, B. R. Pai, B. S. Shenoy. Development of short areca fiber reinforced biodegradable composite material. Procedia Engineering 2013 (64), 966 -972.
  95. [95] C. V. Srinivasa, K. N. Bharath. Effect of alkali treatment on impact behavior of areca fibers reinforced polymer composites. Fiber composites 2013 (1), No. 2, 8.
  96. [96] B. K. Goriparthi, K. N. S. Suman, N. M. Rao. Effect of fiber surface treatments on mechanical and abrasive wear performance of polylactide/jute composites. Composites Part A: Applied Science and Manufacturing 2012 (43), No. 10, 1800 - 1808.
  97. [97] S. Hemsri, K. Grieco, A. D. Asandei, R. S. Parnas. Wheat gluten composites reinforced with coconut fiber. Composites Part A: Applied Science and Manufacturing 2012 (43), No. 7, 1160 - 1168.
  98. [98] M. A. Gunning, L. M. Geever, J. A. Killion, J. G. Lyons, C. L. Higginbotham. Mechanical and biodegradation performance of short natural fibre polyhydroxybutyrate composites. Polymer Testing 2013 (32), No. 8, 1603 - 1611.
DOI: https://doi.org/10.2478/scjme-2018-0004 | Journal eISSN: 2450-5471 | Journal ISSN: 0039-2472
Language: English
Page range: 33 - 50
Published on: May 17, 2018
Published by: Slovak University of Technology in Bratislava
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2018 Ranakoti Lalit, Pokhriyal Mayank, Kumar Ankur, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.