Have a personal or library account? Click to login
LLM-Based Dishonesty and Excessive Collaboration Detection in Cybersecurity Education Cover

LLM-Based Dishonesty and Excessive Collaboration Detection in Cybersecurity Education

Open Access
|Jul 2025

References

  1. D. Cotton, P. Cotton, and R. Shipway, “Chatting and Cheating: Ensuring academic integrity in the era of ChatGPT,” 2023.
  2. A. Cotton, K. Patel, and S. Jennings, “Academic Integrity in the Age of Artificial Intelligence: Student and Faculty Perspectives on ChatGPT and Beyond,” Journal of Educational Technology, vol. 47, no. 2, pp. 155–170, 2023.
  3. D. Owunwanne, N. Rustagi, and R. Dada, “Students Perceptions Of Cheating And Plagiarism In Higher Institutions,” Journal Of College Teaching & Learning (TLC), vol. 7, Nov. 2010.
  4. T. Zhang, Y. Lu, et al., “A Survey on Large Language Models for AIAssisted Education,” arXiv preprint arXiv:2401.01641, 2024.
  5. R. Beverly, et al., “Cybersecurity Education in the Age of AI: Opportunities and Challenges,” in Proc. USENIX Security Education Workshop (USEC), 2023.
  6. J. Zou, O. Levy, et al., “Detecting AI-Generated Text: Current Approaches and Challenges,” Nature Machine Intelligence, vol. 5, pp. 500–510, 2023.
  7. J. Wan, Y. Wang, and D. Wang, “Log-Based Detection of Collaborative Cheating in Online Exams,” IEEE Transactions on Learning Technologies, vol. 16, no. 1, pp. 12–21, 2023.
  8. B. Erdem and M. Karabatak, “Cheating Detection in Online Exams Using Deep Learning and Machine Learning,” Applied Sciences, vol. 15, no. 1, art. 400, 2025. Available: https://www.mdpi.com/2076-3417/15/1/400, doi:10.3390/app15010400
  9. X. Liu, Y. Zhang, J. Li, and Y. Chen, “Challenges and Perspectives on Detecting AI-Generated Content in Academic Settings,” Nature Human Behaviour, vol. 8, no. 3, pp. 315–320, 2024. doi:10.1038/s41562-024-01829-9.
  10. OWASP ModSecurity Project. “ModSecurity Project,” [Online]. Available: https://modsecurity.org/ [Accessed: 27-Apr-2025].
  11. OWASP ModSecurity Project. “ModSecurity 2 Data Formats,” [Online]. Available: https://github.com/owaspmodsecurity/ModSecurity/wiki/ModSecurity-2-Data-Formats.
  12. J. He, M. Rungta, D. Koleczek, A. Sekhon, F. Wang, and S. Hasan, “Does Prompt Formatting Have Any Impact on LLM Performance?,” 2024. [Online]. Available: https://arxiv.org/abs/2411.10541
  13. Yifan Zhou, Jingjing Liu, Wei Wang, et al., “A Comparison of Open-Source and Proprietary Large Language Models for Machine Reading Comprehension,” Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (ACL 2024), 2024. To appear. Available at: https://arxiv.org/abs/2312.16444
  14. Shizhe Qiao, Yuxuan Fan, Xingxuan Jiang, et al., “LiveBench: A Challenging, Contamination-Free LLM Benchmark,” arXiv preprint arXiv:2405.18990, 2024. Available at: https://arxiv.org/abs/2405.18990
  15. Jonathan Chavez Tamales and the LLM-Stats community, “LLM Stats: A Community-Driven Leaderboard for Large Language Models,” 2025. Available at: https://llm-stats.com/. Accessed: 2025-06-13.
  16. Lea Nonninger, Microsoft-backed AI lab Mistral debuts reasoning model to rival OpenAI, 2025. https://www.cnbc.com/2025/06/10/microsoft-backed-ai-lab-mistral-debuts-reasoning-model-to-rival-openai.html. Accessed: 2025-06-13.
DOI: https://doi.org/10.2478/sbeef-2025-0010 | Journal eISSN: 2286-2455 | Journal ISSN: 1843-6188
Language: English
Page range: 60 - 67
Published on: Jul 6, 2025
Published by: Valahia University of Targoviste
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Aurel-Dragoş Hofnăr, published by Valahia University of Targoviste
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.