References
- D. Cotton, P. Cotton, and R. Shipway, “Chatting and Cheating: Ensuring academic integrity in the era of ChatGPT,” 2023.
- A. Cotton, K. Patel, and S. Jennings, “Academic Integrity in the Age of Artificial Intelligence: Student and Faculty Perspectives on ChatGPT and Beyond,” Journal of Educational Technology, vol. 47, no. 2, pp. 155–170, 2023.
- D. Owunwanne, N. Rustagi, and R. Dada, “Students Perceptions Of Cheating And Plagiarism In Higher Institutions,” Journal Of College Teaching & Learning (TLC), vol. 7, Nov. 2010.
- T. Zhang, Y. Lu, et al., “A Survey on Large Language Models for AIAssisted Education,” arXiv preprint arXiv:2401.01641, 2024.
- R. Beverly, et al., “Cybersecurity Education in the Age of AI: Opportunities and Challenges,” in Proc. USENIX Security Education Workshop (USEC), 2023.
- J. Zou, O. Levy, et al., “Detecting AI-Generated Text: Current Approaches and Challenges,” Nature Machine Intelligence, vol. 5, pp. 500–510, 2023.
- J. Wan, Y. Wang, and D. Wang, “Log-Based Detection of Collaborative Cheating in Online Exams,” IEEE Transactions on Learning Technologies, vol. 16, no. 1, pp. 12–21, 2023.
- B. Erdem and M. Karabatak, “Cheating Detection in Online Exams Using Deep Learning and Machine Learning,” Applied Sciences, vol. 15, no. 1, art. 400, 2025. Available: https://www.mdpi.com/2076-3417/15/1/400, doi:10.3390/app15010400
- X. Liu, Y. Zhang, J. Li, and Y. Chen, “Challenges and Perspectives on Detecting AI-Generated Content in Academic Settings,” Nature Human Behaviour, vol. 8, no. 3, pp. 315–320, 2024. doi:10.1038/s41562-024-01829-9.
- OWASP ModSecurity Project. “ModSecurity Project,” [Online]. Available: https://modsecurity.org/ [Accessed: 27-Apr-2025].
- OWASP ModSecurity Project. “ModSecurity 2 Data Formats,” [Online]. Available: https://github.com/owaspmodsecurity/ModSecurity/wiki/ModSecurity-2-Data-Formats.
- J. He, M. Rungta, D. Koleczek, A. Sekhon, F. Wang, and S. Hasan, “Does Prompt Formatting Have Any Impact on LLM Performance?,” 2024. [Online]. Available: https://arxiv.org/abs/2411.10541
- Yifan Zhou, Jingjing Liu, Wei Wang, et al., “A Comparison of Open-Source and Proprietary Large Language Models for Machine Reading Comprehension,” Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (ACL 2024), 2024. To appear. Available at: https://arxiv.org/abs/2312.16444
- Shizhe Qiao, Yuxuan Fan, Xingxuan Jiang, et al., “LiveBench: A Challenging, Contamination-Free LLM Benchmark,” arXiv preprint arXiv:2405.18990, 2024. Available at: https://arxiv.org/abs/2405.18990
- Jonathan Chavez Tamales and the LLM-Stats community, “LLM Stats: A Community-Driven Leaderboard for Large Language Models,” 2025. Available at: https://llm-stats.com/. Accessed: 2025-06-13.
- Lea Nonninger, Microsoft-backed AI lab Mistral debuts reasoning model to rival OpenAI, 2025. https://www.cnbc.com/2025/06/10/microsoft-backed-ai-lab-mistral-debuts-reasoning-model-to-rival-openai.html. Accessed: 2025-06-13.