Have a personal or library account? Click to login
Tourism Forecasting and Tackling Fluctuating Patterns: A Composite Leading Indicator Approach Cover

Tourism Forecasting and Tackling Fluctuating Patterns: A Composite Leading Indicator Approach

Open Access
|Oct 2020

References

  1. Brodien Hapairai, P. M., Walters, G., Li, S. (2018), The effectiveness of ad-induced emotion in reducing tourist risk perceptions towards politically unstable destinations, Tourism Recreation Research, Vol. 43, no. 4, pp. 483-496.10.1080/02508281.2018.1470737
  2. Bry, G., Boschan, C. (1971), Cylical Analysis of Time Series, Selected Procedures and Computer Programs (Technical paper 20). Massachusett Avenue, Cambridge: National Bureau of Economic Research, Columbia University Press, available online at https://econpapers.repec.org/bookchap/nbrnberbk/brv_5f71-1.htm
  3. Chang, W. S., Lee, Y. H. (2016), The macroeconomic contribution to foreign-exchange earnings from tourism in Taiwan, Current Issues in Tourism, Vol. 20, no. 11, pp. 1110-1115.10.1080/13683500.2016.1206062
  4. Chong, M. T., Puah, C. H., Abu Mansor, S. (2018), Oil price dynamics forecasting: An indicator- pivoted paradigm, International Journal of Energy Economics and Policy, Vol. 8, no. 3, pp. 307-311.
  5. Chow, G. C., Lin, A. (1971), Best linear unbiased interpolation, distribution, and extrapolation of time series by related series, The Review of Economics and Statistics, Vol. 53, no. 4, pp. 372-375.10.2307/1928739
  6. Christiano, L. J., Fitzgerald, T. J. (2003), The Band Pass Filter. International Economic Review, Vol. 44, no. 2, pp. 435-465.10.1111/1468-2354.t01-1-00076
  7. Diebold, F., Joon-Haeng, L., Weinbach, G. (1994), Regime-switching with time-varying transition probabilities, Oxford University Press, Oxford: UK.
  8. Gomez, V. (2014), The use of butterworth filters for trend and cycle estimation in economic time series, Journal of Business and Economic Statistics, Vol. 19, no. 3, pp. 365-373.10.1198/073500101681019909
  9. Hamilton, J. (1990), Analysis of time series subject to changes in regime, Journal of Econometrics, Vol. 45, no. 1-2, pp. 39-70.10.1016/0304-4076(90)90093-9
  10. Huarng, K. H., Yu, T. H. K., Parellada, F. S. (2011), An innovative regime switching model to forecast Taiwan tourism demand, The Service Industries Journal, Vol. 31, no. 10, pp, 1603-1612.10.1080/02642069.2010.485637
  11. Jovicic, D. Z. (2014), Key issues in the implementation of sustainable tourism, Current Issues in Tourism, Vol. 17, no. 4, pp. 297-302.10.1080/13683500.2013.797386
  12. Kulendran, N., Wong, K. K. F. (2011), Determinants versus composite leading indicators in predicting turning points in growth cycle, Journal of Travel Research, Vol. 50, no. 4, pp. 417-430.10.1177/0047287510373280
  13. Medhioub, I. (2015), A Markov switching three regime model of Tunisian business cycle, American Journal of Economics, Vol. 5, no. 3, pp. 394-403.
  14. Moore, G. H., Zarnowitz, V. (1986), The development and role of the National Bureau of Economic Research’s business cycle crhonologies. In R. J. Gordon (Ed.), The American Business Cycle: Continuity and Change (pp.735-779), Chicago: University of Chicago Press.
  15. Nilsson, R., Gyomai, G. (2011), Cycle Extraction: A Comparison of the Phase-Average Trend Method, the Hodrick-Prescott and Christiano-Fitzgerald Filters, OECD Statistics Working Papers, No. 2011/04, OECD Publishing, Paris.
  16. Ooi, C. A., Hooy, C. W., Puad, A. M. S. (2013), Tourism crises and state level tourism demand in Malaysia, International Journal of Business and Society, Vol. 14, no. 3, pp. 376-389.
  17. Ozcan, C. C., Ucak, H. (2016), Outbound tourism demand of Turkey: A Markov switching vector autoregressive approach, Czech Journal of Tourism, Vol. 5, no. 2, pp. 59-72.10.1515/cjot-2016-0004
  18. Puah, C. H., Kuek, T. H., Arip, M. A., Wong, S. S. L. (2016), Forecasting property market dynamics: Insights from the property cycle indicator, International Information Institute, Vol. 19, no. 6B, pp. 2225-2232.
  19. Puah, C. H., Tan, W. T., Abu Mansor, S., Wong, S. S. L. (2016), Tackling macroeconomic precariousness: The role of the composite leading indicator, Information International Institute, Vol. 19, no. 6B, pp. 2217-2224.
  20. Tang, C. M. F., King, B., Pratt, S. (2017), Predicting hotel occupancies with public data: An application of OECD indices as leading indicators, Tourism Economics, Vol. 23, no. 5, pp. 1096-1113.10.1177/1354816616666670
  21. The Conference Board. (2000), Business cycle indicators handbook, New York, NY: The Conference Board.
  22. Tule, M., Ajilore, T., Ebuh, G. (2016), A composite index of leading indicators of unemployment in Nigeria, Journal of African Business, Vol. 17, no. 1, pp. 87-105.10.1080/15228916.2016.1113909
  23. Voon, Z. C., Puah, C. H., Wong, S. S. L. (2016), Housing market dynamics: New insights from the indicator approach, Journal of Economics and Economic Education Research, Vol. 17, no. 3, pp. 1-8.
  24. Witt, S. F., Song, H., Louvieris, P. (2003), Statistical testing in forecasting model selection, Journal of Travel Research, Vol. 42, no. 2, pp. 151-158.10.1177/0047287503253941
  25. Yap, G. C. L, Allen, D. (2011), Investigating other leading indicators influencing Australian domestic tourism demand, Mathematics and Computers in Simulation, Vol. 81, no. 7, pp. 1365-1374.10.1016/j.matcom.2010.05.005
DOI: https://doi.org/10.2478/sbe-2020-0034 | Journal eISSN: 2344-5416 | Journal ISSN: 1842-4120
Language: English
Page range: 192 - 204
Published on: Oct 11, 2020
Published by: Lucian Blaga University of Sibiu
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2020 Soh Ann-Ni, Puah Chin-Hong, Arip M. Affendy, published by Lucian Blaga University of Sibiu
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.