Have a personal or library account? Click to login
Relevance of Big Data for Business and Management. Exploratory Insights (Part I) Cover

Relevance of Big Data for Business and Management. Exploratory Insights (Part I)

By: Claudia Ogrean  
Open Access
|Sep 2018

References

  1. Brown, B., Chui, M., & Manyika, J. (2011). Are you ready for the era of ‘big data’. McKinsey Quarterly, 4(1), 24-35.
  2. Burris, P. (2018). Wikibon’s 2018 Big Data and Analytics Market Share Report. March 6. https://wikibon.com/wikibons-2018-big-data-analytics-market-share-report/.
  3. Chen, C. P., & Zhang, C. Y. (2014). Data-intensive applications, challenges, techniques and technologies: A survey on Big Data. Information Sciences, 275, 314-347.10.1016/j.ins.2014.01.015
  4. Chen, H., Chiang, R. H., & Storey, V. C. (2012). Business intelligence and analytics: from big data to big impact. MIS quarterly, 1165-1188.10.2307/41703503
  5. Chen, M., Mao, S., & Liu, Y. (2014). Big data: A survey. Mobile networks and applications, 19(2), 171-209.10.1007/s11036-013-0489-0
  6. Clarivate Analytics. (2018). Web of Science (WoS) Core Collection. http://apps.webofknowledge.com.
  7. Coleman, S., Göb, R., Manco, G., Pievatolo, A., Tort-Martorell, X., & Reis, M. S. (2016). How can SMEs benefit from big data? Challenges and a path forward. Quality and Reliability Engineering International, 32(6), 2151-2164.10.1002/qre.2008
  8. Cumbley, R., & Church, P. (2013). Is “big data” creepy?. Computer Law & Security Review, 29(5), 601-609.10.1016/j.clsr.2013.07.007
  9. Cuzzocrea, A., Song, I. Y., & Davis, K. C. (2011, October). Analytics over large-scale multidimensional data: the big data revolution!. In Proceedings of the ACM 14th international workshop on Data Warehousing and OLAP (pp. 101-104). ACM.10.1145/2064676.2064695
  10. De Mauro, A., Greco, M., & Grimaldi, M. (2016). A formal definition of Big Data based on its essential features. Library Review, 65(3), 122-135.10.1108/LR-06-2015-0061
  11. Demchenko, Y., Ngo, C., & Membrey, P. (2013). Architecture framework and components for the big data ecosystem. Journal of System and Network Engineering, 1-31.10.1109/CTS.2014.6867550
  12. Dijcks, J. P. (2012). Oracle: Big data for the enterprise. Oracle white paper, 16. http://www.oracle.com/us/products/database/big-data-for-enterprise-519135.pdf.
  13. George, G., Haas, M. R., & Pentland, A. (2014). Big Data and Management. Academy of Management Journal, 57(2).10.5465/amj.2014.4002
  14. Katal, A., Wazid, M., & Goudar, R. H. (2013, August). Big data: issues, challenges, tools and good practices. In Contemporary Computing (IC3), 2013 Sixth International Conference on (pp. 404-409). IEEE.10.1109/IC3.2013.6612229
  15. Kitchin, R. (2014). The data revolution: Big data, open data, data infrastructures and their consequences. Sage.10.4135/9781473909472
  16. Kwon, T. H., Kwak, J. H., & Kim, K. (2015). A study on the establishment of policies for the activation of a big data industry and prioritization of policies: Lessons from Korea. Technological Forecasting and Social Change, 96, 144-152.10.1016/j.techfore.2015.03.017
  17. Kobielus, J. (2018). Wikibon’s 2018 Big Data Analytics Trends and Forecast. February 28. https://wikibon.com/wikibons-2018-big-data-analytics-trends-forecast/.
  18. Laney, D. (2001). 3D Data Management: Controlling data volume, velocity and variety. META group research note, 6(70), 1.
  19. LaValle, S., Lesser, E., Shockley, R., Hopkins, M. S., & Kruschwitz, N. (2011). Big data, analytics and the path from insights to value. MIT Sloan Management Review, 52(2), 21.
  20. Lee, I. (2017). Big data: Dimensions, evolution, impacts, and challenges. Business Horizons, 60(3), 293-303.10.1016/j.bushor.2017.01.004
  21. Lohr, S. (2012). The age of big data. New York Times, 11(2012).
  22. Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., & Byers, A. H. (2011). Big data: The next frontier for innovation, competition, and productivity. McKinsey Global Institute. https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20Insights/Big%20data%20The%20next%20frontier%20for%20innovation/MGI_big_data_full_report.ashx.
  23. Marr, B. (2016). Key Business Analytics. The 60+ business analysis tools every manager needs to know. Pearson Education Limited.
  24. Martin, K. E. (2015). Ethical issues in the big data industry. MIS Quarterly Executive. 14:2, 67-85.
  25. Mayer-Schonberger, V., Cukier, K. (2014). Big data: A revolution that will transform how we live, work, and think. John Murray Publishers.
  26. McAfee, A., Brynjolfsson, E., Davenport, T. H., Patil, D. J., & Barton, D. (2012). Big data: the Management Revolution. Harvard Business Review, 90(10), 60-68.
  27. Ohlhorst, F. J. (2012). Big data analytics: turning big data into big money. John Wiley & Sons.10.1002/9781119205005
  28. Russom, P. (2011). Big data analytics. TDWI best practices report, fourth quarter, 19(4), 1-34.
  29. Schmarzo, B. (2013). Big Data: Understanding how data powers big business. John Wiley & Sons.
  30. Schroeck, M., Shockley, R., Smart, J., Romero-Morales, D., & Tufano, P. (2012). Analytics: the real-world use of big data: How innovative enterprises extract value from uncertain data, Executive Report. IBM Institute for Business Value and Said Business School at the University of Oxford. https://www.bdvc.nl/images/Rapporten/GBE03519USEN.PDF.
  31. Schwardmann, U. (1993). Parallelization of a multigrid solver on the KSR1. Supercomputer, 10(3), 4-12.
  32. Shafer, T. (2017). The 42 V’s of Big Data and Data Science. Elder Research. https://www.elderresearch.com/blog/42-v-of-big-data.10.1515/ci-2017-0312
  33. Turban, E., King, D., Sharda, R., & Delen, D. (2013). Business intelligence: a managerial perspective on analytics. Prentice Hall, New York.
  34. Vorhies, B. (2014). How Many “V” s in Big Data–The Characteristics that Define Big Data. Data Science Central. https://www.datasciencecentral.com/profiles/blogs/how-many-v-s-inbig-data-the-characteristics-that-define-big-data.
  35. Waller, M. A., & Fawcett, S. E. (2013). Data science, predictive analytics, and big data: a revolution that will transform supply chain design and management. Journal of Business Logistics, 34(2), 77-84.10.1111/jbl.12010
DOI: https://doi.org/10.2478/sbe-2018-0027 | Journal eISSN: 2344-5416 | Journal ISSN: 1842-4120
Language: English
Page range: 153 - 163
Published on: Sep 10, 2018
Published by: Lucian Blaga University of Sibiu
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2018 Claudia Ogrean, published by Lucian Blaga University of Sibiu
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.