References
- Bray, S., Johnson, S., & Kleinberg, B. (2022). Testing Human Ability To Detect Deepfake Images of Human Faces. J. Cybersecur., 9. https://doi.org/10.48550/arXiv.2212.05056.
- DeKraker, Z. (2022). Modeling Human Visual Detection Using Deep Networks. https://doi.org/10.37099/mtu.dc.etdr/1312.
- DiResta, R., & Goldstein, J. A. (2024). How spammers and scammers leverage AI-generated images on Facebook for audience growth. Harvard Kennedy School Misinformation Review. https://doi.org/10.37016/mr-2020-151
- Karinshak, E., & Jin, Y. (2023). AI-driven disinformation: a framework for organizational preparation and response. Journal of Communication Management. https://doi.org/10.1108/jcom-09-2022-0113.
- Menz, B., Modi, N., Sorich, M., & Hopkins, A. (2023). Health Disinformation Use Case Highlighting the Urgent Need for Artificial Intelligence Vigilance: Weapons of Mass Disinformation.. JAMA internal medicine. https://doi.org/10.1001/jamainternmed.2023.5947.
- Montoro-Montarroso, A., Cantón-Correa, J., Rosso, P., Chulvi, B., Panizo-Lledot, Á., Huertas-Tato, J., Calvo-Figueras, B., Rementeria, M., & Gómez-Romero, J. (2023). Fighting disinformation with artificial intelligence: fundamentals, advances and challenges. El Profesional de la información. https://doi.org/10.3145/epi.2023.may.22.
- Sakamoto, T. (2020). Author Response: Factors in Color Fundus Photographs That Can Be Used by Humans to Determine Sex of Individuals. Translational Vision Science & Technology, 9. https://doi.org/10.1167/tvst.9.7.11.
- Shoaib, M., Wang, Z., Ahvanooey, M., & Zhao, J. (2023). Deepfakes, Misinformation, and Disinformation in the Era of Frontier AI, Generative AI, and Large AI Models. ArXiv, abs/2311.17394. https://doi.org/10.48550/arXiv.2311.17394.
- Spitale, G., Biller-Andorno, N., & Germani, F. (2023). AI model GPT-3 (dis) informs us better than humans. Science Advances, 9. https://doi.org/10.1126/sciadv.adh1850.
- Xu, D., Fan, S., & Kankanhalli, M. (2023). Combating Misinformation in the Era of Generative AI Models. Proceedings of the 31st ACM International Conference on Multimedia. https://doi.org/10.1145/3581783.3612704.