Have a personal or library account? Click to login
Latitudinal pattern of abundance and composition of ciliate communities in the surface waters of the Atlantic Ocean Cover

Latitudinal pattern of abundance and composition of ciliate communities in the surface waters of the Atlantic Ocean

Open Access
|Jan 2015

References

  1. [1] Arndt, H. (1991). On the importance of planktonic protozoans in the eutrophication process of the Baltic Sea. Int. Revue ges. Hydrobiol. 76: 387–396. http://dx.doi.org/10.1002/iroh.1991076031110.1002/iroh.19910760311
  2. [2] Beers, J.R., Reid F.M.H. & Stewart G.L. (1982). Seasonal abundance of the microzooplankton population in the North Pacific Central Gyre. Deep-Sea Res. 29: 227–245. http://dx.doi.org/10.1016/0198-0149(82)90111-X10.1016/0198-0149(82)90111-X
  3. [3] Caron, D.A. & Hutchins D.A. (2013). The effects of changing climate on microzooplankton grazing and community structure: drivers, predictions and knowledge gaps. J. Plankton Res. 35: 235–252. DOI: 10.1093/plankt/fbs091. http://dx.doi.org/10.1093/plankt/fbs09110.1093/plankt/fbs091
  4. [4] Dolan, J.R. & Pierce R.W. (2013). Diversity and distributions of tintinnids. In J.R. Dolan, D.J.S. Montagnes, S. Agatha, D.W. Coats & D.K. Stoecker (Eds.), The biology and ecology of tintinnid ciliates. Models for marine plankton (pp. 214–243). Chichester: Wiley-Blackwell. 10.1002/9781118358092.ch10
  5. [5] Froneman, P.W. (2004). Protozooplankton community structure and grazing impact in the eastern Atlantic sector of the Southern Ocean in austral summer 1998. Deep-Sea Res. Pt. II 51: 2633–2643. DOI: 10.1016/j.dsr2.2004.09.001. http://dx.doi.org/10.1016/j.dsr2.2004.09.00110.1016/j.dsr2.2004.09.001
  6. [6] Froneman, P.W. & Perissinotto R. (1996). Structure and grazing of the microzooplankton communities of the Subtropical Convergence and a warm-core eddy in the Atlantic sector of the Southern Ocean. Mar. Ecol. Prog. Ser. 135: 237–245. http://dx.doi.org/10.3354/meps13523710.3354/meps135237
  7. [7] Garcia-Cuetos, L., Moestrup Ø. & Hansen P.J. (2012). Studies on the genus Mesodinium II. Ultrastructural and molecular investigations of five marine species help clarifying the taxonomy. J. Eukaryot. Microbiol. 59: 374–400. DOI: 10.1111/j.1550-7408.2012.00630.x. http://dx.doi.org/10.1111/j.1550-7408.2012.00630.x10.1111/j.1550-7408.2012.00630.x
  8. [8] Gifford, D.J. (1991). The protozoan-metazoan trophic link in pelagic ecosystems. J. Protozool. 38: 81–86. http://dx.doi.org/10.1111/j.1550-7408.1991.tb04806.x10.1111/j.1550-7408.1991.tb04806.x
  9. [9] Hasle, G.R. (1978). The inverted microscope method. In A. Sournia (Ed.), Phytoplankton Manual (pp. 88–96). Paris: Unesco.
  10. [10] Huston, M.A. & Wolverton S. (2009). The global distribution of net primary production: resolving the paradox. Ecol. Monogr. 79: 343–377. http://dx.doi.org/10.1890/08-0588.110.1890/08-0588.1
  11. [11] Leakey, R.J.G., Burkill P.H. & Sleigh M.A. (1996). Planktonic ciliates in the northwestern Indian Ocean: their abundance and biomass in waters of contrasting productivity. J. Plankton Res. 18: 1063–1071. http://dx.doi.org/10.1093/plankt/18.6.106310.1093/plankt/18.6.1063
  12. [12] Lessard, E.J. & Murrell M.C. (1996). Distribution, abundance and size composition of heterotrophic dinoflagellates and ciliates in the Sargasso Sea near Bermuda. Deep-Sea Res. Pt. I 43: 1045–1065. http://dx.doi.org/10.1016/0967-0637(96)00052-010.1016/0967-0637(96)00052-0
  13. [13] Liu, H.X., Li G., Tan Y.H., Ke Z.X., Huang J.R. et al. (2013). Latitudinal changes (6°S–20°N) of summer ciliate abundance and species compositions in surface waters from the Java Sea to the South China Sea. Acta Oceanol. Sin. 32: 66–70. DOI: 10.1007/s13131-013-0299-z. http://dx.doi.org/10.1007/s13131-013-0299-z10.1007/s13131-013-0299-z
  14. [14] McManus, G.B. & Santoferrara L.F. (2013). Tintinnids in microzooplankton communities. In J.R. Dolan, D.J.S. Montagnes, S. Agatha, D.W. Coats & D.K. Stoecker (Eds.), The biology and ecology of tintinnid ciliates. Models for marine plankton (pp. 198–213). Chichester: Wiley-Blackwell. 10.1002/9781118358092.ch9
  15. [15] Menden-Deuer, S. & Lessard E. (2000). Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol. Oceanogr. 45: 569–579. http://dx.doi.org/10.4319/lo.2000.45.3.056910.4319/lo.2000.45.3.0569
  16. [16] Montagnes, D.J.S. & Lynn D.H. (1989). The annual cycle of Mesodinium rubrum in the waters surrounding the Isles of Shoals, Gulf of Maine. J. Plankton Res. 11: 193–201. http://dx.doi.org/10.1093/plankt/11.2.19310.1093/plankt/11.2.193
  17. [17] Montagnes, D.J.S., Allen J., Brown L., Bulit C., Davidson R. et al. (2008). Factors controlling the abundance and size distribution of the phototrophic ciliate Myrionecta rubra in open waters of the North Atlantic. J. Eukaryot. Microbiol. 55: 457–465. DOI: 10.1111/j.1550-7408.2008.00344.x. http://dx.doi.org/10.1111/j.1550-7408.2008.00344.x10.1111/j.1550-7408.2008.00344.x
  18. [18] Montagnes, D.J.S., Allen J., Brown L., Bulit C., Davidson R. et al. (2010). Role of ciliates and other microzooplankton in the Irminger Sea (NW Atlantic Ocean). Mar. Ecol. Prog. Ser. 411: 101–115. DOI 10.3354/meps08646. http://dx.doi.org/10.3354/meps0864610.3354/meps08646
  19. [19] Ota, T. & Taniguchi A. (2003). Standing crop of planktonic ciliates in the East China Sea and their potential grazing impact and contribution to nutrient regeneration. Deep-Sea Res. Pt. II 50: 423–442. http://dx.doi.org/10.1016/S0967-0645(02)00461-710.1016/S0967-0645(02)00461-7
  20. [20] Porter, K.G., Sherr E.B., Sherr B.F., Pace M. & Sanders R.W. (1985). Protozoa in planktonic food webs. J. Protozool. 32: 409–415. http://dx.doi.org/10.1111/j.1550-7408.1985.tb04036.x10.1111/j.1550-7408.1985.tb04036.x
  21. [21] Putt, M. & Stoecker D.K. (1989). An experimentally determined carbon: volume ratio for marine “oligotrichous” ciliates from estuarine and coastal waters. Limnol. Oceanogr. 34: 1097–1103. http://dx.doi.org/10.4319/lo.1989.34.6.109710.4319/lo.1989.34.6.1097
  22. [22] Quevedo, M., Viesca L., Anadón R. & Fernández E. (2003). The protistan microzooplankton community in the oligotrophic north-eastern Atlantic: large- and mesoscale patterns. J. Plankton Res. 25: 551–563. http://dx.doi.org/10.1093/plankt/25.5.55110.1093/plankt/25.5.551
  23. [23] Rychert, K. (2004). The size structure of Mesodinium rubrum population in the Gdańsk Basin. Oceanologia 46: 439–444.
  24. [24] Rychert, K., Spich K., Laskus K., Pączkowska M., Wielgat-Rychert M. et al. (2013). Composition of protozoan communities at two sites in the coastal zone of the southern Baltic Sea. Oceanol. Hydrobiol. Stud. 42: 268–276. DOI: 10.2478/s13545-013-0083-x. http://dx.doi.org/10.2478/s13545-013-0083-x10.2478/s13545-013-0083-x
  25. [25] Samuelsson, K., Berglund J. & Andersson A. (2006). Factors structuring the heterotrophic flagellate and ciliate community along a brackish water primary production gradient. J. Plankton Res. 28: 345–359. DOI: 10.1093/plankt/fbi118. http://dx.doi.org/10.1093/plankt/fbi11810.1093/plankt/fbi118
  26. [26] Santoferrara, L. & Alder V. (2009). Abundance trends and ecology of planktonic ciliates of the south-western Atlantic (35–63°S): a comparison between neritic and oceanic environments. J. Plankton Res. 31: 837–851. DOI: 10.1093/plankt/fbp033. http://dx.doi.org/10.1093/plankt/fbp03310.1093/plankt/fbp033
  27. [27] Sherr, E.B. & Sherr B.F. (2002). Significance of predation by protists in aquatic microbial food webs. Antonie Leeuwenhoek 81: 293–308. http://dx.doi.org/10.1023/A:102059130726010.1023/A:1020591307260
  28. [28] Smetacek, V. (1981). The annual cycle of protozooplankton in the Kiel Bight. Mar. Biol. 63: 1–11. http://dx.doi.org/10.1007/BF0039465710.1007/BF00394657
  29. [29] Sohrin, R., Imazawa M., Fukuda H. & Suzuki Y. (2010). Full-depth profiles of prokaryotes, heterotrophic nanoflagellates, and ciliates along a transect from the equatorial to the subarctic central Pacific Ocean. Deep-Sea Res. Pt. II 57: 1537–1550. DOI: 10.1016/j.dsr2.2010.02.020. http://dx.doi.org/10.1016/j.dsr2.2010.02.02010.1016/j.dsr2.2010.02.020
  30. [30] Sorokin, Y.I., Kopylov A.I. & Mamaeva N.V. (1985). Abundance and dynamics of microplankton in the central tropical Indian Ocean. Mar. Ecol. Prog. Ser. 24: 27–41. http://dx.doi.org/10.3354/meps02402710.3354/meps024027
  31. [31] Stoecker D.K. (2013). Predators of tintinnids. In J.R. Dolan, D.J.S. Montagnes, S. Agatha, D.W. Coats & D.K. Stoecker (Eds.), The biology and ecology of tintinnid ciliates. Models for marine plankton (pp. 122–144). Chichester: Wiley-Blackwell. 10.1002/9781118358092.ch5
  32. [32] Stoecker, D.K., Sieracki M.E., Verity P.G., Michaels A.E., Haugen E. et al. (1994). Nanoplankton and protozoan microzooplankton during the JGOFS North Atlantic bloom experiment: 1989 and 1990. J. Mar. Biol. Ass. UK 74: 427–443. http://dx.doi.org/10.1017/S002531540003944810.1017/S0025315400039448
  33. [33] Stoecker, D.K., Taniguchi A. & Michaels A.E. (1989). Abundance of autotrophic, mixotrophic and heterotrophic planktonic ciliates in shelf and slope waters. Mar. Ecol. Prog. Ser. 50: 241–254. http://dx.doi.org/10.3354/meps05024110.3354/meps050241
  34. [34] Stukel, M.R. & Landry M.R. (2010). Contribution of picophytoplankton to carbon export in the equatorial Pacific: a reassessment of food web flux inferences from inverse models. Limnol. Oceanogr. 55: 2669–2685. DOI: 10.4319/lo.2010.55.6.2669. 10.4319/lo.2010.55.6.2669
  35. [35] Suzuki, T. & Taniguchi A. (1998). Standing crops and vertical distribution of four groups of marine planktonic ciliates in relation to phytoplankton chlorophyll a. Mar. Biol. 132: 375–382. http://dx.doi.org/10.1007/s00227005040410.1007/s002270050404
  36. [36] Tett, P. & Wilson H. (2000). From biogeochemical to ecological models of marine microplankton. J. Mar. Syst. 25: 431–446. http://dx.doi.org/10.1016/S0924-7963(00)00032-410.1016/S0924-7963(00)00032-4
  37. [37] Vaque, D., Alonso-Sáez L., Arístegui J., Agustí S., Duarte C.M. et al. (2014). Bacterial production and losses to predators along an open ocean productivity gradient in the Subtropical North East Atlantic Ocean. J. Plankton Res. 36: 198–213. DOI: 10.1093/plankt/fbt085. http://dx.doi.org/10.1093/plankt/fbt08510.1093/plankt/fbt085
  38. [38] Verity, P.G. & Langdon C. (1984). Relationships between lorica volume, carbon, nitrogen, and ATP content of tintinnids in Narragansett Bay. J. Plankton Res. 6: 859–867. http://dx.doi.org/10.1093/plankt/6.5.85910.1093/plankt/6.5.859
  39. [39] Verity, P.G., Stoecker D.K., Sieracki M.E. & Nelson J.R. (1993). Grazing, growth and mortality of microzooplankton during the 1989 North Atlantic spring bloom at 47N, 18W. Deep-Sea Res. Pt. I 40: 1793–1814. http://dx.doi.org/10.1016/0967-0637(93)90033-Y10.1016/0967-0637(93)90033-Y
  40. [40] Verity, P.G., Stoecker D.K., Sieracki M.E. & Nelson J.R. (1996). Microzooplankton grazing of primary production at 140 W in the equatorial Pacific. Deep-Sea Res. Pt. II 43: 1227–1255. http://dx.doi.org/10.1016/0967-0645(96)00021-510.1016/0967-0645(96)00021-5
  41. [41] WoRMS Editorial Board. 2014. World Register of Marine Species, Retrieved April 18, 2014, from http://www.marinespecies.org 10.1016/S1468-1218(14)00026-1
  42. [42] Yang, E.J., Choi J.K. & Hyun J.-H. (2004). Distribution and structure of heterotrophic protist communities in the northeast equatorial Pacific Ocean. Mar. Biol. 146: 1–15. DOI: 10.1007/s00227-004-1412-9. http://dx.doi.org/10.1007/s00227-004-1412-910.1007/s00227-004-1412-9
DOI: https://doi.org/10.2478/s13545-014-0161-8 | Journal eISSN: 1897-3191 | Journal ISSN: 1730-413X
Language: English
Page range: 436 - 441
Published on: Jan 4, 2015
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2015 Krzysztof Rychert, Bożena Nawacka, Roman Majchrowski, Tomasz Zapadka, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.