Have a personal or library account? Click to login
Geostatistical methods for estimation of toxicity of marine bottom sediments based on the Gdańsk Basin area Cover

Geostatistical methods for estimation of toxicity of marine bottom sediments based on the Gdańsk Basin area

Open Access
|Oct 2014

References

  1. [1] ASTM (American Society for Testing and Materials). (2004). Standard Test Method for Assessing the Microbial Detoxification of Chemically Contaminated Water and Soil Using a Toxicity Test with a Luminescent Marine Bacterium. ASTM D5660-96. USA.
  2. [2] Azur Environmental (1998). Microtox Basic Solid-phase Test (Basic SPT). Carlsbad, CA, USA.
  3. [3] Bolałek J., Graca B. & Burska D. (2011a). Skład chemiczny wód interstycjalnych. in: Uścinowicz Sz. (Eds.), Geochemia osadów powierzchniowych Morza Bałtyckiego (pp. 309–319), Warszawa: PIG-PIB. ISBN 978-83-7538-813-8
  4. [4] Bolałek J., Graca B. & Burska D. (2011b), Gazy w osadach Morza Bałtyckiego, in: Uścinowicz Sz. (Eds.), Geochemia osadów powierzchniowych Morza Bałtyckiego (pp. 320–325), Warszawa: PIG-PIB. ISBN 978-83-7538-813-8
  5. [5] Calace N., Ciardullo S., Petronio B., Pietrantonio M., Abbodanzi F., Campisi T. & Cardellicchio N. (2005). Influence of chemical parameters (heavy metals, organic matter, sulphur and nitrogen) on toxicity of sediments from the Mar Piccolo (Taranto, Ionian Sea, Italy). Microchemical Journal. 79: 243–248.. DOI: 10.1016/j.microc.2004.10.005. http://dx.doi.org/10.1016/j.microc.2004.10.00510.1016/j.microc.2004.10.005
  6. [6] Campisi T., Abbondanzi F., Casado-Martinez C., DelValls T.A., Guerra R. & Iacondini A. (2005). Effect of sediment turbidity and color on light output measurement for Microtoxs Basic Solid-Phase Test. Chemosphere 60: 9–15. DOI: 10.1016/j.chemosphere.2004.12.052. http://dx.doi.org/10.1016/j.chemosphere.2004.12.05210.1016/j.chemosphere.2004.12.052
  7. [7] Chen Y.X, Chen H.L, Xu Y.T & Shen M.W. (2004). Irreversible sorption of pentachlorophenol to sediment:experimental observations. Environment International 30(1):31–37. DOI: 10.1016/S0160-4120(03)00145-4 http://dx.doi.org/10.1016/S0160-4120(03)00145-410.1016/S0160-4120(03)00145-4
  8. [8] Cinti D., Poncia P.P., Procesi M., Galli G. & Quattrocchi F. (2013). Geostatistical techniques application to dissolved radon hazard mapping: An example from the western sector of the Sabatini Volcanic District and the Tolfa Mountains (central Italy). Applied Geochemistry 35: 312–324. DOI: 10.1016/j.apgeochem.2013.05.005. http://dx.doi.org/10.1016/j.apgeochem.2013.05.00510.1016/j.apgeochem.2013.05.005
  9. [9] Cleveland L., Litte E.E., Petty J.D., Johnson B.T., Lebo J.A., Orazio C.E., Dionne J. & Crocket A. (1997). Toxicological and chemical screening of Antarctica sediments: Use of whole sediment toxicity testes Microtox, Mutatox and Semipermeable Membrane. Marine Pollution Bulletin 34: 194–202. ISSN: 0025-326X. http://dx.doi.org/10.1016/S0025-326X(96)00088-410.1016/S0025-326X(96)00088-4
  10. [10] Coya B., Marañón E. & Sastre H. (2000). Ecotoxicity assessment of slag generated in the process of recycling lead from waste batteries. Resources Conservation and Recycling 29: 291–300. ISSN: 0921-3449. DOI: 10.1016/S0921-3449(00)00054-9. http://dx.doi.org/10.1016/S0921-3449(00)00054-910.1016/S0921-3449(00)00054-9
  11. [11] Coz A., Rodríguez-Obeso O., Alonso-Santurde R., Álvarez-Guerra M., Andrés A., Viguri J.R., Mantzavinos D. & Kalogerakis N. (2008). Toxicity bioassays in core sediments from the Bay of Santander, northern Spain. Environmental Research 106: 304–312. DOI: 10.1016/j.envres.2007.05.009. http://dx.doi.org/10.1016/j.envres.2007.05.00910.1016/j.envres.2007.05.00917619000
  12. [12] Casado-Martínez M.C., Campisi T., Díaz A., Lo Re R., Obispo R., Postma J.F., Riba I., Sneekes A.C., Buceta J.L. & DelValls T.A. (2006). Interlaboratory assessment of marine bioassays to evaluate the environmental quality of coastal sediments in Spain. II. Bioluminescence inhibition test for rapid sediment toxicity assessment. Ciencias Marinas 32: 129–138. ISSN: 0185-3880. 10.7773/cm.v32i12.1031
  13. [13] Graca B. & Burska D. (2011). Czynniki kształtujące zawartość węgla organicznego i substancji biogenicznych w osadach. in: Uścinowicz Sz. (Eds.), Geochemia osadów powierzchniowych Morza Bałtyckiego (pp. 309–319), Warszawa: PIG-PIB. ISBN 978-83-7538-813-8
  14. [14] Granberg M.E., Gunnarsson J..S, Hedman J.E., Rosenberg R. & Jonsson P. (2008). Bioturbation-driven release of organic contaminants from Baltic Sea sediments mediated by the invading polychaete Marenzelleria neglecta. Environ Sci Technol. 42(4): 1058–65. http://dx.doi.org/10.1021/es071607j10.1021/es071607j18351072
  15. [15] Hedman J.E. (2008). Fate of contaminants in Baltic Sea sediment ecosystems: the role of bioturbation. Doctoral Thesis. Stockholm University. 10.3354/meps07218
  16. [16] Jerosch K. (2013). Geostatistical mapping and spatial variability of surficial sediment types on the Beaufort Shelf based on grain size data. Journal of Marine Systems 127: 5–13. DOI: 10.1016/j.jmarsys.2012.02.013. http://dx.doi.org/10.1016/j.jmarsys.2012.02.01310.1016/j.jmarsys.2012.02.013
  17. [17] Johanson K., ver Hoef J.M. & Krivoruchko K. (2003). ArcGIS 9. Using ArcGIS Geostatistical Analyst. ESRI. DOI 10.1007/s00704-009-0140-y
  18. [18] Keddy C.J., Greene J.C. & Bonnell M.A. (1995). Review of whole-organism bioassays: soil, freshwater sediment, and freshwater assessment in Canada. Ecotoxicology and Environmental Safety 30: 221–251. ISSN: 0147-6513. http://dx.doi.org/10.1006/eesa.1995.102710.1006/eesa.1995.10277541337
  19. [19] Kobusińska M., Skauradszun M. & Niemirycz E. (2014). Factors determining the accumulation of pentachlorophenol — a precursor of dioxins in bottom sediments of the Gulf of Gdańsk (Baltic Sea). Oceanological and Hydrobiological Studies 43(2): 154–164. DOI:10.2478/S13545-014-0128-9. http://dx.doi.org/10.2478/s13545-014-0128-910.2478/s13545-014-0128-9
  20. [20] Konat J. & Kowalewska G. (2001). Polychlorinated biphenyls PCBs in sediments of the southern Baltic Sea trends and fate. The Science of the Total Environment 280: 1–15. DOI: 10.1016/S0048-9697(01)00785-9. http://dx.doi.org/10.1016/S0048-9697(01)00785-910.1016/S0048-9697(01)00785-9
  21. [21] Kwan K.K. & Dutka B.J. (1995), Comparative assessment of two Solid-Phase toxicity bioassays: The Direct Sediment Toxicity Testing Procedure (DSTTP) and Microtox Solid Phase Test (SPT). Bulletin of Environmental Contamination and Toxicology 55: 338–346. DOI: 10.1007/BF00206670. http://dx.doi.org/10.1007/BF0020667010.1007/BF00206670
  22. [22] Lahr J., Maas-Diepeveen J.L., Stuijfzand S.C., Leonards P.E.G., Druke J.M., Lucker S., Espeldoorn A., Kerkum L.C.M., van Stee L.L.P. & Hendriks A.J. (2003). Responses in sediment bioassays used in the Netherlands: can observed toxicity be explained by routinely monitored priority pollutants? Water Research 37: 1691–1710.. DOI: 10.1016/S0043-1354(02)00562-6. http://dx.doi.org/10.1016/S0043-1354(02)00562-610.1016/S0043-1354(02)00562-6
  23. [23] Larsson, P., Andersson, A., Bromam, D., Nordback, J. & Lundberg, E. (2000). Persistent organic pollutants (POPs) in the pelagic systems. Ambio 29(4): 202–209. DOI: 10.1579/0044-7447-29.4.202. 10.1579/0044-7447-29.4.202
  24. [24] Łukawska-Matuszewska K., Burska D. & Niemirycz E. (2009). Toxicity assessment by Microtox in sediments, pore waters and sediment saline elutriates in the Gulf of Gdańsk (Baltic Sea). Clean-Soil, Air, Water 37: 592–598. DOI: 10.1002/clen.200900021 http://dx.doi.org/10.1002/clen.20090002110.1002/clen.200900021
  25. [25] Macken A., Giltrap M., Foley B., McGovern E., McHugh B. & Davoren M. (2008). An integrated approach to the toxicity assessment of Irish marine sediments: Validation of established marine bioassays for the monitoring of Irish marine sediments. Environment International 34: 1023–1032. DOI: 10.1016/j.envint.2008.08.013. ISSN: 0160-4120. http://dx.doi.org/10.1016/j.envint.2008.03.00510.1016/j.envint.2008.03.00518456331
  26. [26] Mamindy-Pajany Y., Geret F., Roméo M., Hurel Ch. & Marmier N. (2012). Ex situ remediation of contaminated sediments using mineral additives: Assessment of pollutant bioavailability with the Microtox solid phase test. Chemosphere 86:1112–1116. DOI: 10.1016/j.chemosphere.2011.12.001. http://dx.doi.org/10.1016/j.chemosphere.2011.12.00110.1016/j.chemosphere.2011.12.00122197312
  27. [27] Morales-Caselles C., Kalman J., Micaelo C., Ferreira A.M., Vale C., Riba I. & DelValls T.A. (2008). Sediment contamination, bioavailability and toxicity of sediments affected by an acute oil spill: four years after the sinking of the tanker Prestige. Chemosphere 71: 1207–1213. DOI: 10.1016/j.chemosphere.2007.12.013. http://dx.doi.org/10.1016/j.chemosphere.2007.12.01310.1016/j.chemosphere.2007.12.01318262592
  28. [28] Morales-Caselles C., Riba I. & Ángel DelValls T. (2009). A weight of evidence approach for quality assessment of sediments impacted by an oil spill: The role of a set of biomarkers as a line of evidence. Marine Environmental Research 67: 31–37. DOI: 10.1016/j.marenvres.2008.10.003. http://dx.doi.org/10.1016/j.marenvres.2008.10.00310.1016/j.marenvres.2008.10.00319041131
  29. [29] Niemirycz E., Nitchthauser J., Staniszewska M., Nałęcz-Jawacki G. & Bolałek J. (2007). The Microtox biological test of surface waters and sediment in Poland. Oceanological and Hydrobiological Studies 36: 151–163. DOI: 10.2478/v10009-007-0030-5. http://dx.doi.org/10.2478/v10009-007-0030-510.2478/v10009-007-0030-5
  30. [30] Niemirycz E. (2008). Halogenated organic compounds in the environment in relation to climate change. Warsaw: Environmental Monitoring Library.
  31. [31] Niemirycz E. (2011). Dopływ substancji chemicznych rzekami, in: Uścinowicz Sz. (Eds.), Geochemia osadów powierzchniowych Morza Bałtyckiego (pp. 91–106). Warszawa: PIG-PIB. ISBN 978-83-7538-813-8.
  32. [32] Niemirycz E. & Jankowska D. (2011). Concentration and profiles of PCDD/Fs in sediments of major polish rivers and the Gdańsk Basin — Baltic Sea. Chemosphere 85: 525–532. DOI: 10.1016/j.chemosphere.2011.08.014. http://dx.doi.org/10.1016/j.chemosphere.2011.08.01410.1016/j.chemosphere.2011.08.014
  33. [33] Park K. & Hee S.Q. (2001). Effect of dust on the viability of Vibrio fischeri in the Microtox test. Ecotoxicology and Environmental Safety 50: 189–195. DOI: 10.1006/eesa.2001.2109. http://dx.doi.org/10.1006/eesa.2001.210910.1006/eesa.2001.2109
  34. [34] Parsons T.R., Maaita Y., Lalli, C.M. (1985). A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, Oxford.
  35. [35] Pazdro K. (2004). Persistent organic pollutants in sediments from the Gulf of Gdańsk. Annual Set the Environment Protection. 6: 63–76.
  36. [36] Pedersen E., Bjornstad E., Andersen H.V., Kjolholt J. & Poll C. (1998). Characterization of sediments from Copenhagen Harbour by use of biotestes. Water Science Technology 37: 233–240. ISSN: 0273-1223. http://dx.doi.org/10.1016/S0273-1223(98)00203-010.1016/S0273-1223(98)00203-0
  37. [37] Piccini Ch., Marchetti A. & Francaviglia R. (2014). Estimation of soil organic matter by geostatistical methods: Use of auxiliary information in agricultural and environmental assessment. Ecological Indicators 36: 301–314. DOI: 10.1016/j.ecolind.2013.08.009. http://dx.doi.org/10.1016/j.ecolind.2013.08.00910.1016/j.ecolind.2013.08.009
  38. [38] Renz J.R. & Forster S. (2013). Are similar worms different? A comparative tracer study on bioturbation in the three sibling species Marenzelleria arctia, M. viridis, and M. neglecta from the Baltic Sea. Limnol. Oceanogr. 58(6): 2046–2058. DOI: 10.4319/lo.2013.58.6.2046. http://dx.doi.org/10.4319/lo.2013.58.6.204610.4319/lo.2013.58.6.2046
  39. [39] Ricking M., Beckman E. & Svenson A. (2002) PAHs and Microtox acute toxicity in contaminated sediments in Swede. J. Soils Sed. 2(3):129–136. DOI: 10.1007/BF02988464. http://dx.doi.org/10.1007/BF0298846410.1007/BF02988464
  40. [40] Sahebjalal E. (2012). Application of Geostatistical Analysis for Evaluating Variation in Groundwater Characteristics. World Applied Sciences Journal 18(1): 135–141. DOI: 10.5829/idosi.wasj.2012.18.01.664
  41. [41] Salizzato M., Pavoni B., Ghirardini A.V. & Ghetti P.F. (1998). Sediment toxicity measured using Vibrio fischeri related to the concentrations of organic (PCBs, PAHs) and inorganic (metals, sulphur) pollutants. Chemosphere 36: 2949–2968. DOI: 10.1016/S0045-6535(98)00001-0. http://dx.doi.org/10.1016/S0045-6535(98)00001-010.1016/S0045-6535(98)00001-0
  42. [42] Serafim A., Company R., Lopes B., Rereira C., Cravo A., Fonseca V.F., França S., Bebianno M.J. & Cabral H.N. (2013). Evaluation of sediment toxicity in different Portuguese estuaries: Ecological impact of metals and polycyclic aromatic hydrocarbons. Estuarine, Costal and Shelf Science 130: 30–41. DOI: 10.1016/j.ecss.2013.04.018. http://dx.doi.org/10.1016/j.ecss.2013.04.01810.1016/j.ecss.2013.04.018
  43. [43] Smith J. & Smith P. (2007). Introduction to Environmental Modelling. New York: Oxford University Press.
  44. [44] Sundqvist K. (2009). Sources of dioxins and other POPs to the marine environment: Identification and apportionment using pattern analysis and receptor modeling. Doctoral Thesis. Umeå University.
  45. [45] Svenson A., Edsholt E., Ricking M., Remberger M. & Röttorp J. (1996). Sediment contaminats and Microtox Toxicity Tested in a Direct Contact Exposure Test. Environmental Toxicology and Water Quality. An International Journal 11: 293–300. DOI: 10.1002/(SICI)1098-2256(1996)11:4〈293::AID-TOX2〉3.0.CO;2-4 10.1002/(SICI)1098-2256(1996)11:4<;293::AID-TOX2>3.0.CO;2-4
  46. [46] Szefer P. (2002). Metals, metalloids and radionuclides in the Baltic Sea ecosystem. Elsevier Science. B.V., Amsterdam.
  47. [47] Szymczak E., Skauradszun M. & Niemirycz E. (2013). Litologiczne uwarunkowania toksyczności powierzchniowych osadów dennych terenów ujściowych cieków Zatoki Gdańskiej. International Scientific Conference „Dioxins in the environment — science for health”.
  48. [48] Świderska-Bróż M. (1987). Zjawiska sorpcji w wodach naturalnych oraz procesach oczyszczania wód. Ochrona środowiska. Wydawnictwo PZITS 521-2/3(32–33): 9–14
  49. [49] Urbański J. (2012). GIS w badaniach przyrodniczych. Gdańsk: Wydawnictwo Uniwersytetu Gdanskiego.
  50. [50] Urbański J. (2007). Fizyczna typologia dna Zatoki Gdańskiej. Atlas cyfrowy. Pracownia Geoinformacji, Zakład Oceanografii Fizycznej, Instytut Oceanografii UG.
  51. [51] Uścinowicz Sz. (2011). Współczesne osady powierzchniowe i procesy sedymentacyjne. in: Uścinowicz Sz. (Eds.), Geochemia osadów powierzchniowych Morza Bałtyckiego (pp. 309–319), Warszawa: PIG-PIB. ISBN 978-83-7538-813-8
  52. [52] Van den Brink P.J. & Kater B.J. (2006). Chemical and biological evaluation of sediments from the Wadden Sea, the Netherlands. Ecotoxicology 15: 451–460. DOI: 10.1016/j.trac.2009.03.006. http://dx.doi.org/10.1007/s10646-006-0080-610.1016/j.trac.2009.03.006
  53. [53] Vigano L., Arillo A., Buffagni A., Camusso M., Ciannarella R., Crosa G., Falugi C., Galassi S., Guzzella L., Lopez A., Mingazzini M., Pagnotta R., Patrolecco L., Tartari G. & Valsecchi S. (2003). Quality assessment of bed sediments of the Po River (Italy). Water Research 37: 501–518. DOI: 10.1016/S0043-1354(02)00109-4. http://dx.doi.org/10.1016/S0043-1354(02)00109-410.1016/S0043-1354(02)00109-4
  54. [54] Viguri J., Irabien M.J., Yusta I., Soto J., Gómez J., Rodríguez P., Martínez M., Irabien J.A. & Coz A. (2007). Physico-chemical and toxicological characterization of the historic estuarine sediments: a multidisciplinary approach. Environment International 33: 436–444. DOI:10.1016/j.envint.2006.10.005 http://dx.doi.org/10.1016/j.envint.2006.10.00510.1016/j.envint.2006.10.005
  55. [55] Webster R. & Oliver M.A. (2001). Geostatistics for Environmental Scientists. Wiley & Sons Ltd. Chichester.
  56. [56] Zalewski M. (2011). Odpływ Wisłą związków azotu i fosforu na tle zmian produkcji pierwotnej rejonu Basenu Gdańskiego. Doctoral Thesis. University of Gdansk.
  57. [57] Zhang J & He M. (2013). Effect of dissolved organic matter on sorption and desorption of phenanthrene onto black carbon. Journal of Environmental Sciences 25(12):2378–2383. DOI: 10.1016/S1001-0742(12)60328-3 http://dx.doi.org/10.1016/S1001-0742(12)60328-310.1016/S1001-0742(12)60328-3
DOI: https://doi.org/10.2478/s13545-014-0139-6 | Journal eISSN: 1897-3191 | Journal ISSN: 1730-413X
Language: English
Page range: 247 - 256
Published on: Oct 29, 2014
Published by: University of Gdańsk
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2014 Maria Witt, Marta Kobusińska, Joanna Maciak, Elżbieta Niemirycz, published by University of Gdańsk
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.