Have a personal or library account? Click to login
Effect of temperature on physiology and bioenergetics of adult Harris mud crab Rhithropanopeus harrisii (Gould, 1841) from the southern Baltic Sea Cover

Effect of temperature on physiology and bioenergetics of adult Harris mud crab Rhithropanopeus harrisii (Gould, 1841) from the southern Baltic Sea

Open Access
|Oct 2014

References

  1. [1] Bacevičius, E. & Gasiūnaitė Z.R. (2008). Two crab species-Chinese mitten crab (Eriocheir sinensis Milne-Edwards) and mud crab (Rhithropanopeus harrisii Gould ssp. Tridentatus Maitland) in the Lithuanian coastal waters, Baltic Sea. Trans. Wat. Bull. 2: 63–68. DOI: 10.1285/i1825229Xv2n2p63
  2. [2] Chen, J.C. & Chia P.G. (1996). Oxygen Uptake and Nitrogen Excretion of Juvenile Scylla serrata at Different Temperature and Salinity Levels. J. Crust. Biol. 16(3): 437–442. DOI: 10.1163/193724096X00441 http://dx.doi.org/10.2307/154873210.1163/193724096X00441
  3. [3] Chen, J.C. & Kou T. (1996). Effects of temperature on oxygen consumption and nitrogenous excretion of juvenile Macrobrachium rosenbergii. Aquaculture. 145(1–4): 295–303. DOI: 10.1016/S0044-8486(96)01348-8 http://dx.doi.org/10.1016/S0044-8486(96)01348-810.1016/S0044-8486(96)01348-8
  4. [4] Choy, S.C. (1986). Natural diet and feeding habits of the crabs Liocarcinus puber and L. holsatus (Decapoda, Brachyura, Portunidae). Mar. Ecol. Prog. Ser. 31: 87–99 http://dx.doi.org/10.3354/meps03108710.3354/meps031087
  5. [5] Christiansen, M.E. & Costlow J.D.Jr. (1975). The effect of salinity and cyclic temperature on larval develop of the mud crab Rhithropanopeus harrisii (Brachyura: Xantidae) reared in the laboratory. Mar. Biol. 32: 215–221. DOI: 10.1007/BF00399201 http://dx.doi.org/10.1007/BF0039920110.1007/BF00399201
  6. [6] Conover, R.J. (1966). Assimilation of organic matter by zooplankton. Limnol. Oceanog. 11: 338–290. DOI: 10.4319/lo.1966.11.3.0338 http://dx.doi.org/10.4319/lo.1966.11.3.033810.4319/lo.1966.11.3.0338
  7. [7] Corte Rosaria, J. & Martin E.R. (2010). Behavioral Changes in Freshwater Crab Barytelphusa cunicularis after Exposure to Low Frequency Electromagnetic Fields. World J. Fish. Mar. Sci. 2(6): 487–494
  8. [8] Crear, B.J. & Forteath G.N.R. (2002). Feeding has the largest effect on the ammonia excretion rate of the southern rock lobster, Jasus edwardsii, and the western rock lobster, Panulirus cygus. Aquac. Eng. 26: 239–250. DOI:10.1016/S0144-8609(02)00033-X http://dx.doi.org/10.1016/S0144-8609(02)00033-X10.1016/S0144-8609(02)00033-X
  9. [9] Czerniejewski, P. & Rybczyk A. (2008). Body weight, morphometry, and diet of the mud crab Rhithropanopeus harrisii tridentatus (Maitland, 1874) in the Odra Estuary, Poland. Crustaceana. 81(11): 1289–1299. DOI: 10.1163/156854008X369483 http://dx.doi.org/10.1163/156854008X36948310.1163/156854008X369483
  10. [10] Diamond, D.W., Scott L.K., Forward R.B.Jr. & Kirby-Smith W. (1989). Respiration and osmoregulation of the estuarine crab Rhithropanopeus harrisii (Gould): effect of the herbicide, alachlor. Comp. Biochem. Physiol. 93A: 313–318. DOI: 0.1016/0300-9629(89)90043-1 http://dx.doi.org/10.1016/0300-9629(89)90043-110.1016/0300-9629(89)90043-1
  11. [11] Elliott, J.M. & Davison W. (1975). Energy equivalents of oxygen consumption in animal energetic. Oecologia. 19:195–201 http://dx.doi.org/10.1007/BF0034530510.1007/BF0034530528309234
  12. [12] Forward, R.B.Jr. (2009). Larval Biology of the Crab Rhithropanopeus harrisii (Gould): A Synthesis. Biol. Bull. 216(3): 243–256 10.1086/BBLv216n3p243
  13. [13] Fowler, A.E., Forsström T., von Numers M. & Vesakoski O. (2013). The North American mud crab Rhithropanopeus harrisii (Gould, 1841) in newly colonized Northern Baltic Sea: distribution and ecology. Aquat. Inv. 8(1): 89–96. DOI: 0.3391/ai.2013.8.1.10. http://dx.doi.org/10.3391/ai.2013.8.1.1010.3391/ai.2013.8.1.10
  14. [14] Gnaiger, E. & Bitterlich G. (1984). Proximate biochemical composition and caloric content calculate from elemental CHN analysis: a stoichiometric concept. Oecologia. 62: 289–298. http://dx.doi.org/10.1007/BF0038425910.1007/BF0038425928310880
  15. [15] Gonçalves, F., Ribeiro R. & Soares M.V.M. (1995). Rhithropanopeus harrisii (Gould), an American crab in the Estuary of the Mondego River. J. Crust. Biol. 15(4): 756–762. DOI: 10.2307/1548824. http://dx.doi.org/10.2307/154882410.2307/1548824
  16. [16] Guerin, J.L. & Stickle W.B. (1992). Effects of salinity gradients on the tolerance and bioenergetics of juvenile blue crabs (Callinectes sapidus) from waters of different environmental salinities. Mar. Biol. 114(3): 391–396. DOI: 10.1007/BF00350029 http://dx.doi.org/10.1007/BF0035002910.1007/BF00350029
  17. [17] Hartnoll, R.G. (1982). Growth in the Biology of Crustacea. In D.E. Bliss (Eds.), Embryology, Morphology and Genetics 2 (pp 116–196). Academic Press.
  18. [18] Hegele-Drywa, J. & Normant M. (2014). Non-native crab Rhithropanopeus harrisii (Gould, 1984) — a new component of the benthic communities in the Gulf of Gdańsk (southern Baltic Sea). Oceanologia. 56(1): 125–139. DOI: 10.5697/oc.56-1.125 http://dx.doi.org/10.5697/oc.56-1.12510.5697/oc.56-1.125
  19. [19] Hochachka, P.W. (1991). Temperature: the ectothermy option. In P.W. Hochachka & T.P. Mommsen (Eds.), Biochemistry and molecular ecology of fishes (pp 313–322). Amsterdam, Elsevier. 10.1016/B978-0-444-89124-2.50016-6
  20. [20] Hulathduwa, Y.D., Stickle W.B. & Brown K.M. (2007). The effect of salinity on survival, bioenergetics and predation risk in the mud crabs Panopeus simpsoni and Eurypanopeus depressus. Mar. Biol. 152: 363–370. http://dx.doi.org/10.1007/s00227-007-0687-z10.1007/s00227-007-0687-z
  21. [21] Hutchison, V.H. & Dupré R.K. (1992). Thermoreulation. In M.E. Feder & W.W. Burggren (Eds.), Environmental physiology of the amphipods (pp 206–249). University of Chicago Press.
  22. [22] Iseda, M., Otani M. & Kimura T. (2007). First record of an introduced crab Rhithropanopeus harrisii (Crusteacea: Brachyura: Panopeidae) in Japan. JPN. J. Benthol. 62: 39–44. 10.5179/benthos.62.39
  23. [23] Jakubowska M. & Normant M. (2011). Effect of temperature on the physiology and bioenergetics of adults of the Chinese mitten crab Eriocheir sinensis: considerations for a species invading cooler waters. Mar. Freshwater. Behav. Physiol. 44(3): 171–183. DOI:10.1080/10236244.2011.598283 http://dx.doi.org/10.1080/10236244.2011.59828310.1080/10236244.2011.598283
  24. [24] Kinne, O. & Rotthauwe H.W. (1952). Biologische Beobachtungen und Untersuchungen über die Blutkonzentration an Heteropanope tridentatus Maitland (Decapoda). Kieler Meeresforsch. 8: 212–217 (in German).
  25. [25] Klekowski, R.Z. & Fischer Z. (1993). Bioenergetyka ekologiczna zwierząt zmiennocieplnych. Warszawa, PAN (in Polish).
  26. [26] Klekowski, R.Z. & Opaliński K.W. (1993). Metabolizm energetyczny. In R.Z. Klekowski & Z. Fisher (Eds.), Bioenergetyka ekologiczna zwierząt zmiennocieplnych (pp 35–82). Polska Akademia Nauk, WydziaŁ II Nauk Biologicznych.
  27. [27] Kondzela, C.M. & Shirley T.C. (1993). Survival, feeding, and growth of juvenile Dungeness crabs from southeastern Alaska reared at different temperatures. J. Crust. Biol. 13: 25–35 http://dx.doi.org/10.2307/154912010.2307/1549120
  28. [28] Koroleff, F. (1976). Determination of nutrients. In K. Grasshoff, K. Kremling & M. Ehrhardt (Eds.), Methods of seawater analysis (pp 159–229). New York, Weinheim.
  29. [29] Kotta, J. & Ojaveer H. (2012). Rapid establishment of the alien crab Rhithropanopeus harrisii (Gould) in the Gulf of Riga. Est. J. Ecol. 61(4): 293–298. DOI: 10.3176/eco.2012.4.04 http://dx.doi.org/10.3176/eco.2012.4.0410.3176/eco.2012.4.04
  30. [30] Kujawa, S. (1957). Biology and culture of the crab Rhithropanopeus harrisii (Gould) subsp. tridentatus (Maitland) from Vistula Lagoon. Wszechświat. 2: 57–59
  31. [31] Lee, S.Y. (1997). Potential trophic importance of the faecal material of the mangrove sesarmine crab Sesarma messa. Mar. Ecol. Prog. Ser. 159: 275–284 http://dx.doi.org/10.3354/meps15927510.3354/meps159275
  32. [32] Lucas, A. (1993). Bioénergétique Des Animaux Aquatiques. Paris, Masson (in French).
  33. [33] Maltby, L., Naylor C. & Calow P. (1990). Effect of stress on a freshwater benthic detritivore: Scope for growth in. Ecotox. Environ. Safety. 9(3): 285–291. DOI: 10.1016/0147-6513(90)90030-9 http://dx.doi.org/10.1016/0147-6513(90)90030-910.1016/0147-6513(90)90030-9
  34. [34] McCue, M.D. (2006). Specific dynamic action: A century of investigation. Comp. Biochem. Physiol. 144 A: 381–394. DOI: 10.1016/j.cbpa.2006.03.011 http://dx.doi.org/10.1016/j.cbpa.2006.03.01110.1016/j.cbpa.2006.03.011
  35. [35] Normant, M., Chrobak M. & Szaniawska A. (2002). Energy value and chemical composition (CHN) of the Chinese mitten crab Eriocheir sinensis (Decapoda: Grapsidae) from the Baltic Sea. Therm. Acta. 394: 233–237. DOI: 10.1016/S0040-6031(02)00259-9 http://dx.doi.org/10.1016/S0040-6031(02)00259-910.1016/S0040-6031(02)00259-9
  36. [36] Normant, M. & Gibowicz M. (2008). Salinity induced changes in haemolymph osmolality and total metabolic rate of the mud crab Rhithropanopeus harrisii Gould, 1841 from Baltic coastal waters. J. Exp. Mar. Biol. Ecol. 355(2): 145–152. DOI: 10.1016/j.jembe.2007.12.014 http://dx.doi.org/10.1016/j.jembe.2007.12.01410.1016/j.jembe.2007.12.014
  37. [37] Normant, M., Dziekoński M., Drzazgowski J. & Lamprecht I. (2007). Metabolic investigations of aquatic organisms with a new twin heat conduction calorimeter. Therm. Acta. 458(1–2): 101–106. DOI: 10.1016/j.tca.2007.01.025 http://dx.doi.org/10.1016/j.tca.2007.01.02510.1016/j.tca.2007.01.025
  38. [38] Normant, M., Król M. & Jakubowska M. (2012). Effect of salinity on the physiology and bioenergetics of adult Chinese mitten crabs Eriocheir sinensis. J. Exp. Mar. Biol. Ecol. (416–417): 215–220. DOI:10.1016/j.jembe.2012.01.001 10.1016/j.jembe.2012.01.001
  39. [39] Normant, M. & Lamprecht I. (2006). Does scope for growth change as a result of salinity stress in the amphipod Gammarus oceanicus? J. Exp. Mar. Biol. Ecol. 334(1): 158–163. DOI: 10.1016/j.jembe.2006.01.022 http://dx.doi.org/10.1016/j.jembe.2006.01.02210.1016/j.jembe.2006.01.022
  40. [40] Ojaveer, H., Galil B.S., Minchin D., Olenin S., Amorim A. et al. (2014). Ten recommendations for advancing the assessment and management of non-indigenous species in marine ecosystems. Mar. Pol. (44):160–165. DOI: 10.1016/j.marpol.2013.08.019. 10.1016/j.marpol.2013.08.019
  41. [41] Paul, J.M., Paul A.J. & Kimker A. (1994). Compensatory feeding capacity of 2 Brachyuran crabs, Tanner and Dungeness, after starvation periods like those encountered in pots. Alaska Fish. Res. Bul. 1(2): 184–187
  42. [42] Peng, S., Chen C., Shi Z. & Wang L. (2013). Amino Acid and Fatty Acid Composition of the Muscle Tissue of Yellowfin Tuna (Thunnus Albacares) and Bigeye Tuna (Thunnus Obesus). Journal of Food and Nutrition Research. 1(4): 42–45. DOI: 10.12691/jfnr-1-4-2
  43. [43] Pigliucci, M. & Preston K. 2004. The Evolutionary Biology of Complex Phenotypes. Oxford, Oxford University Press.
  44. [44] Pirestani, S., Ali Sahari M., Barzegar M. & Seyfabadi S.J. (2009). Chemical compositions and minerals of some commercially important fish species from the South Caspian Sea. International Food Research Journal. 16: 39–44. 10.1111/j.1745-4514.2010.00343.x
  45. [45] Radford, C.A., Marsden I.M. & Davison W. (2004). Temporal variation in the specific dynamic action of juvenile New Zealand rock lobsters, Jasus edwardsii. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 139A: 1–9. DOI:10.1016/j.cbpb.2004.02.015 http://dx.doi.org/10.1016/j.cbpb.2004.02.01510.1016/j.cbpb.2004.02.01515471675
  46. [46] Regnault, M. (1987). Nitrogen excretion in marine and fresh-water crustacean. Biol. Rev. 62(1): 1–24. DOI: 10.1111/j.1469-185X.1987.tb00623.x http://dx.doi.org/10.1111/j.1469-185X.1987.tb00623.x10.1111/j.1469-185X.1987.tb00623.x
  47. [47] Robertson, R.F., El-Haj A.J., Clarke A. & Taylor E.W. (2001). Effects of temperature on specific dynamic action and protein synthesis rates in the Baltic isopod crustacean, Saduria entomon. J. Exp. Mar. Biol. Ecol. 262(1): 113–129. DOI: 10.1016/S0022-0981(01)00286-6 http://dx.doi.org/10.1016/S0022-0981(01)00286-610.1016/S0022-0981(01)00286-6
  48. [48] Roche, D.G. & Torchin M.E. (2007). Established population of the North American Harris mud crab, Rhithropanopeus harrisii (Gould 1841) (Crustacea: Brachyura: Xanthidae) in the Panama Canal. Aquat. Inv. 2(3): 155–161. DOI:10.3391/ai.2007.2.3.1 http://dx.doi.org/10.3391/ai.2007.2.3.110.3391/ai.2007.2.3.1
  49. [49] Romero, M.C., Vanella F., Tapella F. & Lovrich G.A. (2006). Assimilation and oxygen uptake associated with two different feeding habits of Munida gregaria (=M. subrugosa) (Crustacea, Decapoda). J. Exp. Mar. Biol. Ecol. 333(1): 40–48. DOI: 10.1016/j.jembe.2005.11.018 http://dx.doi.org/10.1016/j.jembe.2005.11.01810.1016/j.jembe.2005.11.018
  50. [50] Rosas, C., Cuzon G., Pascual C., Gaxiola G. et al. (2007). Energy balance of Octopus maya fed crab or artificial diet. Mar. Biol. 152: 371–381. DOI: 10.1007/s00227-007-0692-2 http://dx.doi.org/10.1007/s00227-007-0692-210.1007/s00227-007-0692-2
  51. [51] Rychter, A. (1997). Effect of anoxia on the behaviour, haemolymph lactate and glycogen concentrations in the mud crab Rhithropanopeus harrisii ssp. tridentatus (Maitland) (Crustacea: Decapoda). Oceanologia. 39(3): 325–335
  52. [52] Sãnchez, A., Pascual C., Sãnchez A., Vargas-Albores F. et al. (2002). Acclimation of Adult Males of Litopenaeus Setiferus Exposed at 27 °C and 31 °C: Bioenergetic Balance. In: E E. Esobar-Briones & F. Alvarez (Eds.), Modern approaches to the study of Crustacea (pp 45–52). New York, Kluwer Academic/Plenum Publishers http://dx.doi.org/10.1007/978-1-4615-0761-1_710.1007/978-1-4615-0761-1_7
  53. [53] Schmidt-Nielsen, K. (1997). Fizjologia zwierząt: Adaptacja do środowiska. Warszawa, PWN.
  54. [54] Schlichting, C.D. & Pigliucci M. (1998). Phenotypic Evolution: A Reaction Norm Perspective. Sunderland, MA: Sinauer Associates.
  55. [55] Schröer, M., Wittmann A.C., Grüner N., Steeger H.U., Bock C., Paul R. & Pörtner H.O. (2009). Oxygen limited thermal tolerance and performance in the lugworm Arenicola marina: a latitudinal comparison. J. Exp. Mar. Biol. Ecol. 372, 22–30. http://dx.doi.org/10.1016/j.jembe.2009.02.00110.1016/j.jembe.2009.02.001
  56. [56] Sébert, P., Pequeux A., Simon B. & Barthelemy L. (1995). Effects of hydrostatic pressure and temperature on the energy metabolism of the Chinese crab (Eriocheir sinensis) and the yellow eel (Anguilla Anguilla). Comp. Biochem. Physiol. 112(1): 131–136. DOI: 10.1016/0300-9629(95)00079-M http://dx.doi.org/10.1016/0300-9629(95)00079-M10.1016/0300-9629(95)00079-M
  57. [57] Smith, R.I. (1967). Osmotic regulation and adaptive reduction of water permeability in a brackish-water crab, Rhithropanopeus harrisii (Brachyura: Xanthidae). Biological Bulletin. 133: 643–658 http://dx.doi.org/10.2307/153992510.2307/1539925
  58. [58] Turoboyski, K. (1973). Biology and ecology of the crab Rhithropanopeus harrisii ssp. tridentatus. Mar. Biol. 23(4): 303–313. DOI: 10.1007/BF00389338 http://dx.doi.org/10.1007/BF0038933810.1007/BF00389338
  59. [59] Vega-Villasante, F., Nolasco H. & Civera R. (1993). The digestive enzymes of the pacific brown shrimp Penaeus californiensis.: I-Properties of amylase activity in the digestive tract. Comp. Biochem. Phisiol. Part B: Comparative Biochemistry. 106(3): 547–550. http://dx.doi.org/10.1016/0305-0491(93)90130-W10.1016/0305-0491(93)90130-W
  60. [60] Wallace, J.C. (1973). Feeding, starvation and metabolic rate in the Shore crab Carcinus maenas. Mar. Biol. 20: 277–281. DOI: 10.1007/BF00354271 http://dx.doi.org/10.1007/BF0035427110.1007/BF00354271
  61. [61] Weihrauch, D., Wilkie M.P. & Walsh P.J. (2009). Ammonia and urea transporters in gills of fish and aquatic crustaceans. J. Exp. Biol. 212: 1716–1730. DOI: 10.1242/jeb.036103 http://dx.doi.org/10.1242/jeb.02485110.1242/jeb.036103
  62. [62] Whiteley, N.M., Roberston R.F., Meagor J., El Haj A. J. & Taylor E.W. (2001). Protein synthesis and specific dynamic action in crustaceans: effects of temperature. Compar. Biochem. Pysiol. Mol. Integr. Physiol. 128(3): 593–604. DOI: 10.1016/S1095-6433(00)00337-8 http://dx.doi.org/10.1016/S1095-6433(00)00337-810.1016/S1095-6433(00)00337-8
  63. [63] Willmer, P., Stone G. & Johnson J. (2000). Environmental physiology of animals. Metabolism and energy. Oxford, Blackwell Science.
  64. [64] Winberg, G.G. (1960). Rate of metabolism and food requirements of fishes. Transl. Ser. Fish. Res. Bd. Can. 194–202.
  65. [65] Wolff, M. & Cerda G. (1992). Feeding Ecology of the crab Cancer Polyodon in La Herradura Bay, northern Chile. Feeding chronology, food intake, gross growth and ecological efficiency. Mar. Ecol. Prog. Ser. 89: 213–219. DOI: 10.3354/meps089213 http://dx.doi.org/10.3354/meps08921310.3354/meps089213
  66. [66] Wyban, J., Walsh W.A. & Godin D.M. (1995). Temperature effects on growth, feeding rate and food conversion of the Pacific white shrimp (Penaeus vannamei). Aquaculture. 138: 267–279. DOI: 10.1016/0044-8486(95)00032-1 http://dx.doi.org/10.1016/0044-8486(95)00032-110.1016/0044-8486(95)00032-1
DOI: https://doi.org/10.2478/s13545-014-0136-9 | Journal eISSN: 1897-3191 | Journal ISSN: 1730-413X
Language: English
Page range: 219 - 227
Published on: Oct 29, 2014
Published by: University of Gdańsk
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2014 Joanna Hegele-Drywa, Monika Normant, published by University of Gdańsk
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.