Have a personal or library account? Click to login
The effect of long-term contamination by heavy metals on community and genome alterations of Chironomidae (Diptera) in a stream with mine drainage water (southern Poland) Cover

The effect of long-term contamination by heavy metals on community and genome alterations of Chironomidae (Diptera) in a stream with mine drainage water (southern Poland)

Open Access
|Jan 2014

References

  1. [1] Aleksander-Kwaterczak, U. Ciszewski D. (2012). Groundwater hydrochemistry and soil pollution in a catchment affected by an abandoned lead-zinc mine: functioning of a diffuse pollution source, Environ. Earth Sci., 65(4), SI, 1179–1189. http://dx.doi.org/10.1007/s12665-011-1366-410.1007/s12665-011-1366-4
  2. [2] Armitage, P.D. Michael, A. Bowes, J. Vincent H.M. (2007). Long-term changes in macroinvertebrate communities of a heavy metal polluted stream: the River Nent (Cumbria, UK) after 28 years. River. Res. Applic., 23, 997–1015. http://dx.doi.org/10.1002/rra.102210.1002/rra.1022
  3. [3] Baumann, Z. & Fisher N.S. (2011). Relating the sediment phase speciation of arsenic, cadmium, and chromium with their bioavailability for the deposit-feeding polychaete Nereis succinea. Environ. Toxicol. Chem., 30(3), 747–756. http://dx.doi.org/10.1002/etc.43610.1002/etc.436
  4. [4] Bervoets, L. Blust, R. de Wit M. Verheyen, R. (1997). Relationships between river sediment characteristics and trace metal concentrations in tubificid worms and chironomid larvae. Environ. Pollut., 95(3), 345–356. http://dx.doi.org/10.1016/S0269-7491(96)00134-010.1016/S0269-7491(96)00134-0
  5. [5] Bovero, S. Hankeln T. Michailova P. Schmidt E. & Sella G. (2002). Nonrandom chromosomal distribution of spontaneous breakpoints and satellite DNA clusters in two geographically distant populations of Chironomus riparius (Diptera, Chironomidae). Genetica, 115, 273–281. http://dx.doi.org/10.1023/A:102069722852510.1023/A:1020697228525
  6. [6] Byrne, P. Reid I. & Wood P.J. (2010). Sediment geochemistry of streams draining abandoned lead/zinc mines in Central Wales: the Afon Twymyn. J. Soils Sediment, 10, 683–697. http://dx.doi.org/10.1007/s11368-009-0183-910.1007/s11368-009-0183-9
  7. [7] Calmano, W. von der Kammer F. & Schwartz R. (2005). Characterization of redox conditions in soils and sediments: Heavy metals. In: Soil and Sediment Remediation [Lens, P. Grotenhuis T. Malina G. Tabak H. (eds)], IWA Publ., London UK, pp 102–120.
  8. [8] Canfield, T.J. Kemble N.E. Brumbaugh W.G. Dwyer F.J. Ingersoll C.G. & Fairchild J.F. (2009). Use of benthic invertebrate community structure and the sediment quality triad to evaluate metal-contaminated sediment in the Upper Clark Fork River, Montana. Environ. Toxicol. Chem., 13(12), 1999–2012. http://dx.doi.org/10.1002/etc.562013121310.1002/etc.5620131213
  9. [9] Ciszewski, D. Aleksander-Kwaterczak U. Kubsik U. Kwandrans J. Pociecha A. Szarek-Gwiazda E. Tłoczek I. Waloszek A. & Wilk-Woźniak E. (2011). Interdisciplinary investigations of contamination effects of pond and stream waters and sediments in the Matylda catchment — an attempt to classification. In: Interdisciplinary Researches in Natural Sciences [Zieliński A. (ed.)], Institute of Geography, Jan Kochanowski Uniwersity, Kielce, pp. 29–46.
  10. [10] Clements, W.H. Cherry, D.S., Van Hassel J.H. (1992). Assessment of the impact of heavy metals on benthic communities at the Clinch River (Virginia): Evaluation of an index of community sensitivity. Canadian Journal of Fisheries and Aquatic Sciences, 49(8), 1686–1694. http://dx.doi.org/10.1139/f92-18710.1139/f92-187
  11. [11] Fittkau, J. E. (1962). Die Tanypodinen (Diptera: Chironomidae). die Tribus Anatopyniini, Macropelopiini und Pentaneurini. Abhandlungen zur Larvalsystematik der Insecten, 6, 1–453.
  12. [12] Fittkau, E.J. Roback S.S. (1983). 5. The larvae of Tanypodine (Diptera: Chironomidae) of the Holarctic region — Keys and diagnoses. Ent. scand. Suppl. 19, 33–110.
  13. [13] Florea, A.M. & Büsselberg D. (2006). Metals and metal compounds: occurrence, use, benefits and toxic cellular effects. Biometals, 19, 419–427. http://dx.doi.org/10.1007/s10534-005-4451-x10.1007/s10534-005-4451-x16841251
  14. [14] Förstner, U. & Salomons W. (1980). Trace metal analysis in polluted sediments. Environ. Technol. Lett., 1, 494. http://dx.doi.org/10.1080/0959333800938400610.1080/09593338009384006
  15. [15] Gower, A.M., Myers G. Kent M. & Foulkes M.E. (2006). Relationships between macroinvertebrate communities and environmental variables in metal-contaminated streams in south-west England. Freshwat. Biol., 32(1), 199–221. http://dx.doi.org/10.1111/j.1365-2427.1994.tb00877.x10.1111/j.1365-2427.1994.tb00877.x
  16. [16] Hankeln, T. Rohwedder A. Weich B. & Schmidt E.R. (1994). Transposition of minisatellite-like DNA in Chironomus midges. Genome, 37(4), 542–549. http://dx.doi.org/10.1139/g94-07710.1139/g94-0777958820
  17. [17] Ilkova, J. Hankeln T. Schmidt E. Michailova P. Petrova N. Sella G. & White K. (2007). Genome instability of Chironomus riparius Mg. and Chironomus piger Strenzke (Diptera, Chironomidae). Caryologia, 60(4), 299–308.
  18. [18] Ilkova, J., Cervella P., Zampicinini GP., Sella, G. & Michailova, P. (2013). Chromosomal breakpoints and transposable-element-insertion sites in salivary gland chromosomes of Chironomus riparius Meigen (Diptera, Chironomidae) from trace metal polluted stations. Acta Zool. Bulg. 65(1), 59–73.
  19. [19] Keyl, H. (1962). Chromosomenevolution bei Chironomus. II. Chromosomenumbauten und phylogenische Beziehungen derArten. Chromosoma, 13, 496–541.
  20. [20] Keyl, H. (1965). A demonstrable local and geometric increase in the chromosomal DNA of Chironomus. Experientia, 21, 191–193. http://dx.doi.org/10.1007/BF0214187810.1007/BF021418785844173
  21. [21] Kiknadze, I.I. Shilova A. Kekris I. Shobanov N. Zelenzov N. Grebenjuk A. Istomina A. & Praslov B. (1991). Karyotype and morphology of larvae in Chironomini. Atlas. Novosibirsk, pp. 1–117.
  22. [22] King, M. (1993). Species evolution: the role of chromosome change. Cambridge University Press, Cambridge, UK, 336pp.
  23. [23] Kownacki A. (2011). Significance and Conservation of Chironomidae (Diptera, Insecta) in aquatic ecosystems of Poland. Forum Faun., 1(1), 4–11. (in Polish with English summary)
  24. [24] Lagadic, L. & Caquet T. (1998). Invertebrates in testing of environmental chemicals: Are they alternatives? Environ. Health Perspect., 106,suppl.2, 593–613. 10.1289/ehp.9810659315334159599707
  25. [25] Lagrana, C. Apodaca D. & David C.P. (2011). Chironomids as biological indicators of metal contamination in aquatic environment. Int. J. Environ. Sci. Dev., 2(4), 306–310. http://dx.doi.org/10.7763/IJESD.2011.V2.14210.7763/IJESD.2011.V2.142
  26. [26] Larner, B.L. Seen A.J. & Townsend A.T. (2006). Comparative study of optimised BCR sequential extraction scheme and acid leaching of elements in the Certified Reference Material NIST 2711. Anal. Chim. Acta, 556, 444–449. http://dx.doi.org/10.1016/j.aca.2005.09.05810.1016/j.aca.2005.09.058
  27. [27] Martinez, E.A., Moore B.C. Schaumloffel J. & Dasgupta N. (2004). Effects of exposure to a combination of zinc- and lead spiked sediments on mouthpart development and growth in Chironomus tentans. Environ. Toxicol. Chem., 23, 662–667. http://dx.doi.org/10.1897/02-51210.1897/02-51215285360
  28. [28] Martinez, E.A. Moore B.C. Schaumloffel J. & Dasgupta N. (2009). Induction of morphological deformities in Chironomus tentans exposed to zinc- and lead-spiked sediments. Environ. Toxicol. Chem., 20(11), 2475–2481. 10.1002/etc.5620201112
  29. [29] Michailova, P. (1989). The polytene chromosomes and their significance to the systematics of the family Chironomidae, Diptera. Acta Zool. Fenn., 186, 1–107.
  30. [30] Michailova, P. Ilkova J. Hankeln T. Schmidt E. Selvaggi A. Zampicinini G. & Sella G. (2009). Somatic breakpoints, distribution of repetitive DNA and non-LTR retrotransposon insertion sites in the chromosomes of Chironomus piger Strenzke (Diptera, Chironomidae). Genetica, 135, 137–148. http://dx.doi.org/10.1007/s10709-008-9263-910.1007/s10709-008-9263-918574700
  31. [31] Michailova, P., Szarek-Gwiazda E. Kownacki A. & Warchałowska-Śliwa E. (2012a). Genomic alterations recorded in two species of Chironomidae (Diptera) in the Upper Jurassic limestone area of the Ojców National Park in Poland attributable to natural and anthropogenic factors. Eur. J. Entomol., 109, 479–490. http://dx.doi.org/10.14411/eje.2012.06110.14411/eje.2012.061
  32. [32] Michailova, P., Sella G. & Petrova N. (2012b). Chironomids (Diptera) and their salivary gland chromosomes as indicators of trace metal genotoxicology. Ital. J. Zool., 79(2), 218–230. http://dx.doi.org/10.1080/11250003.2011.62208410.1080/11250003.2011.622084
  33. [33] Midya, T. Bhaduri S. & Sarkar P. (2012). Failure in somatic pairing of 4th chromosome in Chironomus striatipennis Kieffer (Diptera: Chironomidae). The Bioscan, 7(2), 321–324.
  34. [34] Persaud, D. Jaagumagi R. & Hayton A. (1993). Guidelines for the protection and management of aquatic sediment quality in Ontario. Ontario Ministry of the Environment, Queen’s Printer of Ontario, 27 pp.
  35. [35] Sarkar, P. Bhaduri S. Ghosh C. & Midya T. (2011). A study on the polymorphic fourth chromosome of Chironomus striatipennis (Kieffer). The Bioscan, 6(3), 383–387.
  36. [36] Sella, G. Bovero S. Ginepro M. Michailova P. Petrova N. Robotti C.A. & Zelano V. (2004). Inherited and somatic cytogenetic variability in palaearctic populations of Chironomus riparius Meigen (Diptera, Chironomidae). Genome, 47, 332–244. http://dx.doi.org/10.1139/g03-12810.1139/g03-128
  37. [37] Sokal, R. & Rohlf F. (1995). Biometry. Third edition, W. Freeman, New York.
  38. [38] Waalkes, M. & Misra R. (1996). Cadmium carcinogenicity and genotoxicity. In: Toxicology of Metals [Chang, L.W. (ed.)], CRC Press, Boca Raton, pp. 231–241.
  39. [39] Warwick, W.F. (1988). Morphological deformities in Chironomidae (Diptera) larvae as biological indicators of toxic stress. In: Toxic Contaminants and Ecosystem Health. A Great Lakes Focus [Evan, M.S. (ed.)], John Wiley and Sons, New York.
  40. [40] Wiederholm, T. (ed.) (1983). Chironomidae for Holarctic Region. Keys and Diagnoses. Part 1 — Larvae. Ent. Scand. Suppl., 19, 1–435.
  41. [41] Wieslander, L. (1994). The Balbiani ring multigene family: coding sequences and evolution of a tissue-specific function. Proc. Nucleic Acids Res., 48, 275–313. 10.1016/S0079-6603(08)60858-2
  42. [42] Winner, R. W. Boesel, M.W., Farrell M. P. (1980). Insect community structure as an index of heavy-metal pollution in lotic ecosystems. Canadian Journal of Fisheries and Aquatic Sciences, 37(4), 647–655. http://dx.doi.org/10.1139/f80-08110.1139/f80-081
  43. [43] Yousef, H. Afify A. Hasan H. & Meguid A. (2010). DNA damage in hemocytes of Schistocera gregaria (Orthoptera: Acrididae) exposed to contaminated food with cadmium and lead, Nat. Sci., 2(4), 292–297.
DOI: https://doi.org/10.2478/s13545-013-0102-y | Journal eISSN: 1897-3191 | Journal ISSN: 1730-413X
Language: English
Page range: 460 - 469
Published on: Jan 23, 2014
Published by: University of Gdańsk
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2014 Ewa Szarek-Gwiazda, Pareskeva Michailova, Julia Ilkova, Andrzej Kownacki, Dariusz Ciszewski, Urszula Aleksander-Kwaterczak, published by University of Gdańsk
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.