Have a personal or library account? Click to login
Temporal pattern prevails over spatial variability in phytoplankton communities from a subtropical water supply reservoir Cover

Temporal pattern prevails over spatial variability in phytoplankton communities from a subtropical water supply reservoir

By: Hong Lv,  Jun Yang and  Lemian Liu  
Open Access
|Jan 2014

References

  1. [1] Berger, C., Ba, N., Gugger, M., Bouvy, M., Rusconi, F., Couté, A., Troussellier, M. and Bernard, C. (2006). Temporal dynamics and toxicity of Cylindrospermopsis raciborskii in Lake Guiers (Senegal, West Africa). FEMS Microbiology Ecology 57, 355–366. DOI: 10.1111/j.1574-6941.2006.00141.x. http://dx.doi.org/10.1111/j.1574-6941.2006.00141.x10.1111/j.1574-6941.2006.00141.x
  2. [2] Bouvy, M., Falcao, D., Marinho, M., Pagano, M. and Moura, A. (2000). Occurrence of Cylindrospermopsis raciborskii (Cyanobacteria) in 39 Brazilian tropical reservoirs during the 1998 drought. Aquatic Microbial Ecology 23, 13–27. DOI: 10.3354/ame023013. http://dx.doi.org/10.3354/ame02301310.3354/ame023013
  3. [3] Branco, C.W.C. and Senna, P.A.C. (1994). Factors influencing the development of Cylindrospermopsis raciborskii and Microcystis aeruginosa in the Paranoa Reservoir, Brasilia, Brazil. Algological Studies 75, 85–96.
  4. [4] Briand, J.F., Robillot, C., Quiblier-Lloberas, C., Humbert, J.F. and Coute, A. (2002). Environmental context of Cylindrospermopsis raciborskii (cyanobacteria) blooms in a shallow pond in France. Water Research 36, 3183–3192. DOI: 10.1016/S0043-1354(02)00016-7. http://dx.doi.org/10.1016/S0043-1354(02)00016-710.1016/S0043-1354(02)00016-7
  5. [5] Carpenter, S.R. (2008). Phosphorus control is critical to mitigating eutrophication. Proceedings of the National Academy of Sciences 105, 11039–11040. DOI: 10.1073/pnas.0806112105. http://dx.doi.org/10.1073/pnas.080611210510.1073/pnas.0806112105
  6. [6] Clarke, K.R. and Gorley, R.N. (2001). PRIMER v5: User Manual/Tutorial. PRIMER-E, Plymouth, UK.
  7. [7] Eker, E. and Kideys, A.E. (2003). Distribution of phytoplankton in the southern Black Sea in summer 1996, spring and autumn 1998. Journal of Marine Systems 39, 203–211. DOI: 10.1016/S0924-7963(03)00031-9. http://dx.doi.org/10.1016/S0924-7963(03)00031-910.1016/S0924-7963(03)00031-9
  8. [8] Figueredo, C.C. and Giani, A. (2001). Temporal variation in the diversity and species richness of phytoplankton in a tropical eutrophic reservoir. Hydrobiologia 445, 165–174. DOI: 10.1093/plankt/24.7.617. http://dx.doi.org/10.1023/A:101751373139310.1093/plankt/24.7.617
  9. [9] Han, B.P. and Liu, Z.W. (2012). Tropical and Subtropical Reservoir Limnology in China: Theory and Practice. Springer, New York, USA. DOI: 10.1007/978-94-007-2007-7. http://dx.doi.org/10.1007/978-94-007-2007-710.1007/978-94-007-2007-7
  10. [10] Hawkins, P.R., Runnegar, M.T.C., Jackson, A.R.B. and Falconer, I.R. (1985). Severe hepatotoxicity caused by the tropical cyanobacterium Cylindrospermopsis raciborskii (Woloszynska) Seenaya and Subba Raju isolated from a domestic water supply reservoir. Applied and Environmental Microbiology 50, 1292–1295. 10.1128/aem.50.5.1292-1295.19852387413937492
  11. [11] Hillebrand, H., Durselen, C.D., Kirschtei, D.B., Pollingher, U. and Zohary, T. (1999). Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35, 403–424. DOI: 10.1046/j.1529-8817.1999.3520403.x http://dx.doi.org/10.1046/j.1529-8817.1999.3520403.x10.1046/j.1529-8817.1999.3520403.x
  12. [12] Hu, H.J. and Wei, Y.X. (2006). The Freshwater Algae of China (in Chinese). Science Press, Beijing, China.
  13. [13] Karadžić, V., Simić, G.S., Natić, D., Ržaničanin, A., Ćirić, M. and Gačić, Z. (2013). Changes in the phytoplankton community and dominance of Cylindrospermopsis raciborskii (Wolosz.) Subba Raju in a temperate lowland river (Ponjavica, Serbia). Hydrobiologia 711, 43–60. DOI: 10.1007/s10750-013-1460-6. http://dx.doi.org/10.1007/s10750-013-1460-610.1007/s10750-013-1460-6
  14. [14] Katsiapi, M., Moustaka-Gouni, M., Michaloudi, E. and Ar. Kormas, K. (2011). Phytoplankton and water quality in a Mediterranean drinking-water reservoir (Marathonas Reservoir, Greece). Environmental Monitoring and Assessment 181, 563–575. DOI: 10.1007/s10661-010-1851-3. http://dx.doi.org/10.1007/s10661-010-1851-310.1007/s10661-010-1851-321213042
  15. [15] Kling, J.H. (2009). Cylindrospermopsis raciborskii (Nostocales, Cyanobacteria): a brief historic overview and recent discovery in the Assiniboine River (Canada). Fottea 9, 45–47. 10.5507/fot.2009.002
  16. [16] Marshall, H.G., Lane, M.F., Nesius, K.K. and Burchardt, L. (2009). Assessment and significance of phytoplankton species composition within Chesapeake Bay and Virginia tributaries through a long-term monitoring program. Environmental Monitoring and Assessment 150, 143–155. DOI: 10.1007/s10661-008-0680-0. http://dx.doi.org/10.1007/s10661-008-0680-010.1007/s10661-008-0680-019067200
  17. [17] McCormick, P.V. and Cairns, J.Jr. (1994). Algae as indicators of environmental change. Journal of Applied Phycology 6, 509–526. DOI: 10.1007/BF02182405. http://dx.doi.org/10.1007/BF0218240510.1007/BF02182405
  18. [18] McGregor, G.B. and Fabbro, L.D. (2000). Dominance of Cylindrospermopsis raciborskii (Nostocales, Cyanoprokaryota) in Queensland tropical and subtropical reservoirs: implications for monitoring and management. Lakes and Reservoirs: Research and Management 5, 195–205. DOI: 10.1046/j.1440-1770.2000.00115.x. http://dx.doi.org/10.1046/j.1440-1770.2000.00115.x10.1046/j.1440-1770.2000.00115.x
  19. [19] Mohamed, A.Z. (2007). First report of toxic Cylindrospermopsis raciborskii and Raphidiopsis mediterranea (Cyanoprokaryota) in Egyptian freshwaters. FEMS Microbiology Ecology 59, 749–761. DOI: 10.1111/j.1574-6941.2006.00226.x. http://dx.doi.org/10.1111/j.1574-6941.2006.00226.x10.1111/j.1574-6941.2006.00226.x17069621
  20. [20] Moisander, P.H., Cheshire, L.A., Braddy, J., Calandrino, E.S., Hoffman, M., Piehler, M.F. and Paerl, H.W. (2012). Facultative diazotrophy increases Cylindrospermopsis raciborskii competitiveness under fluctuating nitrogen availability. Microbiology Ecology 79, 800–811. DOI: 10.1111/j.1574-6941.2011.01264.x. 10.1111/j.1574-6941.2011.01264.x22126519
  21. [21] O’Neil, J.M., Davis, T.W., Burford, M.A. and Gobler, C.J. (2012). The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change. Harmful Algae 14, 313–334. DOI:10.1016/j.hal.2011.10.027. http://dx.doi.org/10.1016/j.hal.2011.10.02710.1016/j.hal.2011.10.027
  22. [22] Paul, V.J. (2008). Global warming and cyanobacterial harmful algal booms. In: Hudnell, H,K., ed. Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs. Advances in Experimental Medicine and Biology 619, 239–257. DOI: 10.1007/978-0-387-75865-7_11. http://dx.doi.org/10.1007/978-0-387-75865-7_1110.1007/978-0-387-75865-7_1118461772
  23. [23] Présing, M., Herodek, S., Vörös, L. and Kóbor, I. (1996). Nitrogen fixation, ammonium and nitrate uptake during a bloom of Cylindrospermopsis raciborskii in Lake Balaton. Archiv für Hydrobiologie 136, 553–562. 10.1127/archiv-hydrobiol/136/1996/553
  24. [24] Rakocevic-Nedovic, J. and Hollert, H. (2005). Phytoplankton community and chlorophyll a as trophic state indices of Lake Skadar (Montenegro, Balkan). Environmental Science and Pollution Research 12, 146–152. DOI:10.1065/espr2005.04.241. http://dx.doi.org/10.1065/espr2005.04.24110.1065/espr2005.04.241
  25. [25] Saker, M.L. and Griffiths, D.J. (2000). The effect of temperature on growth and cylindrospermopsin content of seven isolates of Cylindrospermopsis raciborskii (Nostocales, Cyanophyceae) from water bodies in northern Australia. Phycologia 39, 349–354. DOI: 10.2216/i0031-8884-39-4-349.1. http://dx.doi.org/10.2216/i0031-8884-39-4-349.110.2216/i0031-8884-39-4-349.1
  26. [26] Senogles, P., Shaw, G., Smith, M., Norris, R., Chiswell, R., Mueller, J., Sadler, R. and Eaglesham, G. (2000). Degradation of the cyanobacterial toxin cylindrospermopsin, from Cylindrospermopsis raciborskii, by chlorination. Toxicon 38, 1203–1213. DOI:10.1016/S0041-0101(99)00210-X. http://dx.doi.org/10.1016/S0041-0101(99)00210-X10.1016/S0041-0101(99)00210-X
  27. [27] Shen, Y.F., Zhang, Z.S., Gong, X.J., Gu, M.R., Shi, Z.X. and Wei, Y.X. (1990). Modern Biomonitoring Techniques Using Freshwater Microbiota (in Chinese). China Architecture & Building Press, Beijing.
  28. [28] Sommer, U., Gliwicz, Z.M., Lampert, W. and Duncan, A. (1986). The PEG-model of seasonal succession of planktonic events in fresh waters. Archiv für Hydrobiologie 106, 433–471.
  29. [29] Sommer, U., Adrian, R., Domis, L.D.S., Elser, J.J., Gaedke, U., Ibelings, B., Jeppesen, E., Lürling, M., Molinero, J.C., Mooij, W.M., van Donk, E. and Winder, M. (2012). Beyond the plankton ecology group (PEG) model: mechanisms driving plankton succession. Annual Review of Ecology, Evolution, and Systematics 43, 429–448. DOI: 10.1146/annurev-ecolsys-110411-160251. http://dx.doi.org/10.1146/annurev-ecolsys-110411-16025110.1146/annurev-ecolsys-110411-160251
  30. [30] Stabili, L., Caroppo, C. and Cavallo, R.A. (2006). Monitoring of a coastal Mediterranean area: culturable bacteria, phytoplankton, environmental factors and their relationships in the southern Adriatic Sea. Environmental Monitoring and Assessment 121,303–325. DOI: 10.1007/s10661-005-9124-2. http://dx.doi.org/10.1007/s10661-005-9124-210.1007/s10661-005-9124-216763741
  31. [31] Tian, C., Pei, H.Y., Hu, W.R. and Xie, J. (2013). Phytoplankton variation and its relationship with the environmental factors in Nansi Lake, China. Environmental Monitoring and Assessment 185,295–310. DOI: 10.1007/s10661-012-2554-8. http://dx.doi.org/10.1007/s10661-012-2554-810.1007/s10661-012-2554-822327478
  32. [32] Whitton, B.A. and Potts, M. (2000). The Ecology of Cyanobacteria: Their Diversity in Time and Space. Kluwer Academic Publishers, Dordrecht. DOI: 10.1007/978-94-007-3855-3. 10.1007/978-94-007-3855-3
  33. [33] Yang, J., Yu, X.Q., Liu, L.M., Zhang, W.J. and Guo, P.Y. (2012). Algae community and trophic state of subtropical reservoirs in southeast Fujian, China. Environmental Science and Pollution Research 19, 1432–1442. DOI: 10.1007/s11356-011-0683-1. http://dx.doi.org/10.1007/s11356-011-0683-110.1007/s11356-011-0683-122743992
  34. [34] Yang, M., Bi, Y.H., Hu, J.L., Zhu, K.X., Zhou, G.J. and Hu, Z.Y. (2011). Season variation in functional phytoplankton groups in Xiangxi Bay, Three Gorges Reservoir. Chinese Journal of Oceanology and Limnology 29, 1057–1064. DOI: 10.1007/s00343-011-0255-8. http://dx.doi.org/10.1007/s00343-011-0255-810.1007/s00343-011-0255-8
  35. [35] Yu, Z., Yang, J., Zhou, J., Yu, X.Q., Liu, L.M. and Lv, H. 2014. Water stratification affects the microeukaryotic community in a subtropical deep reservoir. Journal of Eukaryotic Microbiology 61, in press. DOI: 10.1111/jeu.12090. 10.1111/jeu.1209024373024
  36. [36] Zhang, Z.S. and Huang, X.F. (1991). Method for Study on Freshwater Plankton (in Chinese). Science Press, Beijing, China.
  37. [37] Zheng, H.P. (2012). Phytoplankton community characteristic and eutrophication status analysis of Dongzhen Reservoir (China). Chemical Engineering & Equipment 5, 193–200. (in Chinese). DOI: 10.3969/j.issn.1003-0735.2012.05.062.
DOI: https://doi.org/10.2478/s13545-013-0098-3 | Journal eISSN: 1897-3191 | Journal ISSN: 1730-413X
Language: English
Page range: 420 - 430
Published on: Jan 23, 2014
Published by: University of Gdańsk
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2014 Hong Lv, Jun Yang, Lemian Liu, published by University of Gdańsk
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.