Have a personal or library account? Click to login
Composition of protozoan communities at two sites in the coastal zone of the southern Baltic Sea Cover

Composition of protozoan communities at two sites in the coastal zone of the southern Baltic Sea

Open Access
|Oct 2013

References

  1. [1] Arndt, H. (1991). On the importance of planktonic protozoans in the eutrophication process of the Baltic Sea. Int. Revue ges. Hydrobiol. 3, 387–396. http://dx.doi.org/10.1002/iroh.1991076031110.1002/iroh.19910760311
  2. [2] Arndt, H., Jost G. & Wasmund N. (1990). Dynamics of pelagic ciliates in eutrophic estuarine waters: importance of functional groups among ciliates and responses to bacterial and phytoplankton production. Arch. Hydrobiol. Beih. Ergebn. Limnol. 34, 239–245.
  3. [3] Azam, F., Fenchel T., Field J. D., Gray J. S., Meyer-Reil L. A. & Thingstad F. (1983). The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257–263. http://dx.doi.org/10.3354/meps01025710.3354/meps010257
  4. [4] Beaver, J.R. & Crisman T.L. (1989). The role of ciliated protozoa in pelagic freshwater ecosystems. Microb. Ecol. 17, 111–136. http://dx.doi.org/10.1007/BF0201184710.1007/BF0201184724197241
  5. [5] Bloem, J., Bär-Glissen M-J. B. & Cappenberg T. E. (1986). Fixation, counting and manipulation of heterotrophic nanoflagellates. Appl. Environ. Microbiol. 52, 1226–1272. 10.1128/aem.52.6.1266-1272.198623922016347232
  6. [6] Boikova, E. (1984). Ecological character of protozoans (Ciliata, Flagellata) in the Baltic Sea. Ophelia 3, 23–32.
  7. [7] Børsheim, K. Y. & Bratbak G. (1987). Cell volume to carbon conversion factors for a bacteriovorous Monas sp. enriched from seawater. Mar. Ecol. Prog. Ser. 36, 171–175. http://dx.doi.org/10.3354/meps03617110.3354/meps036171
  8. [8] Bralewska, J. & Witek Z. (1995). Heterotrophic dinoflagellates in the ecosystem of the Gulf of Gdańsk. Mar. Ecol. Prog. Ser. 117, 241–248. http://dx.doi.org/10.3354/meps11724110.3354/meps117241
  9. [9] Brandt, S. M. & Sleigh M. A. (2000). The quantitative occurrence of different taxa of heterotrophic flagellates in Southampton Water, U.K. Estuar. Coast. Shelf Sci. 51, 91–102. http://dx.doi.org/10.1006/ecss.2000.060710.1006/ecss.2000.0607
  10. [10] Caron, D. A. (1983). Technique for enumeration of heterotrophic and phototrophic nanoplankton, using epifluorescence microscopy, and comparison with other procedures. Appl. Environ. Microbiol. 46, 491–498. 10.1128/aem.46.2.491-498.198323942816346372
  11. [11] Caron, D. A. (2000). Symbiosis and mixotrophy among pelagic microorganisms. In D. L. Kirchman (Ed.), Microbial ecology of the oceans (pp. 495–523). New York: Wiley-Liss.
  12. [12] Caron, D. A. & Swanberg N. R. (1990). The ecology of planktonic sarcodines. Aquat. Sci. 3, 147–180.
  13. [13] Crawford, D. W. (1989). Mesodinium rubrum: the phytoplankter that wasn’t. Mar. Ecol. Prog. Ser. 58, 161–174. http://dx.doi.org/10.3354/meps05816110.3354/meps058161
  14. [14] Edler, L. (1979). Recommendations on methods for marine biological studies. Malmö: BMB Publ.
  15. [15] Esteban, G. F., Fenchel T. & Finlay B. J. (2010). Mixotrophy of ciliates. Protist 161, 621–641. http://dx.doi.org/10.1016/j.protis.2010.08.00210.1016/j.protis.2010.08.00220970377
  16. [16] Garstecki, T., Verhoeven R., Wickham S. A. & Arndt H. (2000). Benthic-pelagic coupling: a comparison of the community structure of benthic and planktonic heterotrophic protists in shallow inlets of the southern Baltic. Fresh. Biol. 45, 147–167. http://dx.doi.org/10.1046/j.1365-2427.2000.00676.x10.1046/j.1365-2427.2000.00676.x
  17. [17] Granda, A. P. & Álvarez R. A. (2008). The annual cycle of nanoflagellates in the Central Cantabrian Sea (Bay of Biscay). J. Marine Syst. 72, 298–308. http://dx.doi.org/10.1016/j.jmarsys.2007.09.00910.1016/j.jmarsys.2007.09.009
  18. [18] Grinienė, E., Mažeikaitė S. & Gasiūnaitė Z. R. (2011). Inventory of the taxonomical composition of the plankton ciliates in the Curonian Lagoon (SE Baltic Sea). Oceanol. Hydrobiol. Stud. 40, 86–95. http://dx.doi.org/10.2478/s13545-011-0045-010.2478/s13545-011-0045-0
  19. [19] Hansen, P. J. (1991). Quantitative importance and trophic role of heterotrophic dinoflagellates in a coastal pelagial food web. Mar. Ecol. Prog. Ser. 73, 253–261. http://dx.doi.org/10.3354/meps07325310.3354/meps073253
  20. [20] HELCOM. (1998). The third Baltic Sea pollution load compilation. Helsinki: Balt. Sea Environ. Proc. 70.
  21. [21] HELCOM. (2006). Biovolumes and size classes of phytoplankton in the Baltic Sea. Helsinki: Balt. Sea Environ. Proc. 106.
  22. [22] Ikävalko, J. (1998). Further observations on flagellates within sea ice in northern Bothnian Bay, the Baltic Sea. Polar Biol. 19, 323–329. http://dx.doi.org/10.1007/s00300005025310.1007/s003000050253
  23. [23] Ikävalko, J. & Thomsen H. A. (1997). The Baltic Sea ice biota (March 1994): a study of the protistan community. Eur. J. Protistol. 33, 229–243. http://dx.doi.org/10.1016/S0932-4739(97)80001-610.1016/S0932-4739(97)80001-6
  24. [24] Johnson, M. D. & Stoecker D. K. (2005). Role of feeding in growth and photophysiology of Myrionecta rubra. Aquat. Microb. Ecol. 39, 303–312. http://dx.doi.org/10.3354/ame03930310.3354/ame039303
  25. [25] Kirchman, D. L. & Williams P. J. LeB. (2000). Introduction. In D. L. Kirchman (Ed.), Microbial ecology of the oceans (pp. 1–11). New York: Wiley-Liss.
  26. [26] Kiss, Á. K., & Ács É., Kiss K. T. & Török J. K. (2009). Structure and seasonal dynamics of the protozoan community (heterotrophic flagellates, ciliates, amoeboid protozoa) in the plankton of a large river (River Danube, Hungary). Eur. J. Protistol. 45, 121–138. http://dx.doi.org/10.1016/j.ejop.2008.08.00210.1016/j.ejop.2008.08.00219285382
  27. [27] Kivi, K. (1986). Annual succession of pelagic protozoans and rotifers in the Tvärminne Storfjärden, SW coast of Finland. Ophelia Suppl. 4, 101–110.
  28. [28] Kopylov, A. I., Kosolapov D. B., Romanenko A. V. & Degermendzhy A. G. (2002). Structure of planktonic microbial food web in a brackish stratified Siberian lake. Aquat. Ecol. 36, 179–204. http://dx.doi.org/10.1023/A:101567891861110.1023/A:1015678918611
  29. [29] Kwiatkowska, M. (1999). Autotrophic and heterotrophic dinoflagellates in the coastal zone of the Gulf of Gdańsk. Unpublished master dissertation, University of Gdańsk, Gdańsk, Poland. (in Polish)
  30. [30] Leakey, R. J. G., Burkill P. H. & Sleigh M. A. (1992). Planktonic ciliates in Southampton Water: abundance, biomass, production, and role in pelagic carbon flow. Mar. Biol. 114, 67–83. 10.1007/BF00350857
  31. [31] Leakey, R. J. G., Burkill P. H. & Sleigh M. A. (1993). Planktonic ciliates in Southampton Water: quantitative taxonomic studies. J. Mar. Biol. Ass. U.K. 73, 579–594. http://dx.doi.org/10.1017/S002531540003312910.1017/S0025315400033129
  32. [32] Leakey, R. J. G., Burkill P. H. & Sleigh M. A. (1994). A comparison of fixatives for the estimation of abundance and biovolume of marine planktonic ciliate populations. J. Plankton Res. 16, 375–389. http://dx.doi.org/10.1093/plankt/16.4.37510.1093/plankt/16.4.375
  33. [33] Leppänen, J.-M. & Bruun J.-E. (1988). Cycling of organic matter during the vernal growth period in the open northern Baltic Proper. IV. Ciliate and mesozooplankton species composition, biomass, food intake, respiration, and production. Finn. Mar. Res. 255, 55–78.
  34. [34] Lesen, A. E., Juhl A. R. & Anderson O. R. (2010). Heterotrophic microplankton in the lower Hudson River Estuary: potential importance of naked, planktonic amebas for bacterivory and carbon flux. Aquat. Microb. Ecol. 61, 45–56. http://dx.doi.org/10.3354/ame0143410.3354/ame01434
  35. [35] Lessard, E. J. & Swift E. (1985). Dinoflagellates from the North Atlantic classified as phototrophic or heterotrophic by epifluorescence microscopy. J. Plankton Res. 8, 1209–1215. http://dx.doi.org/10.1093/plankt/8.6.120910.1093/plankt/8.6.1209
  36. [36] Levinsen, H., Nielsen T. G. & Hansen B. W. (2000). Annual succession of marine pelagic protozoans in Disko Bay, West Greenland, with emphasis on winter dynamics. Mar. Ecol. Prog. Ser. 206, 119–134. http://dx.doi.org/10.3354/meps20611910.3354/meps206119
  37. [37] Mackiewicz, T. (1991). Composition and seasonal changes of nanoflagellates in the Gdańsk Basin (Southern Baltic). Acta Ichthyol. Piscat. 21, 125–134. 10.3750/AIP1991.21.S.13
  38. [38] Majewski, A. (1987). Characteristics of waters. In B. Augustowski (Ed.), Southern Baltic (pp. 173–217). Wrocław: Ossolineum. (in Polish)
  39. [39] Marshall, S. M. (1969). Protozoa. Order: Tintinnida. Cons. Int. Explor. Mer. Zooplankton Sheets, 117–127.
  40. [40] Mathes, J. & Arndt H. (1995). Annual cycle of protozooplankton (ciliates, flagellates and sarcodines) in relation to phyto- and metazooplankton in Lake Neumühler See (Mecklenburg, Germany). Arch. Hydrobiol. 134, 337–358. 10.1127/archiv-hydrobiol/134/1995/337
  41. [41] Mironova, E. I., Telesh I. V. & Skarlato S. O. (2009). Planktonic ciliates of the Baltic Sea (a review). Inland Water Biol. 2, 13–24. http://dx.doi.org/10.1134/S199508290901003910.1134/S1995082909010039
  42. [42] Montagnes, D. J. S., Allen J., Brown L., Bulit C., Davidson R., Fielding S., Heath M., Holliday N. P., Rasmussen J., Sanders R., Waniek J. J. & Wilson D. (2010). Role of ciliates and other microzooplankton in the Irminger Sea (NW Atlantic Ocean). Mar. Ecol. Prog. Ser. 411, 101–115. http://dx.doi.org/10.3354/meps0864610.3354/meps08646
  43. [43] Müller, H. (1989). The relative importance of different ciliate taxa in the pelagic food web of Lake Constance. Microb. Ecol. 18, 261–273. http://dx.doi.org/10.1007/BF0207581310.1007/BF0207581324196206
  44. [44] Piwosz, K. & Pernthaler J. (2010). Seasonal population dynamics and trophic role of planktonic nanoflagellates in coastal surface waters of the Southern Baltic. Environ. Microbiol. 12, 364–377. http://dx.doi.org/10.1111/j.1462-2920.2009.02074.x10.1111/j.1462-2920.2009.02074.x19799618
  45. [45] Pollehne, F., Busch S., Jost G., Meyer-Harms B., Nausch M., Reckermann M., Schaening P., Setzkorn D., Wasmund N. & Witek Z. (1995). Primary production patterns and heterotrophic use of organic material in the Pomeranian Bay (southern Baltic). Bull. Sea Fish. Inst. 136, 43–60.
  46. [46] Rogerson, A., Anderson O. R. & Vogel C. (2003). Are planktonic naked amoebae predominately floc associated or free in the water column? J. Plankton Res. 25, 1359–1365. http://dx.doi.org/10.1093/plankt/fbg10210.1093/plankt/fbg102
  47. [47] Rychert, K. (2005). Protozoan communities and their impact on oxygen consumption in the near-bottom zone of the Gdańsk Basin. Unpublished doctoral dissertation, Institute of Oceanology PAS, Sopot, Poland. (in Polish)
  48. [48] Rychert, K. (2006). Nanoflagellates in the Gdańsk Basin: coexistence between forms belonging to different trophic types. Oceanologia 48, 323–330.
  49. [49] Rychert, K. (2011). Communities of heterotrophic protists (protozoa) in the near-bottom zone of the Gdańsk Basin. Oceanol. Hydrobiol. Stud. 40, 68–73. http://dx.doi.org/10.2478/s13545-011-0031-610.2478/s13545-011-0031-6
  50. [50] Rychert, K. & Pączkowska M. (2012). Ciliate Mesodinium rubrum in the coastal zone of the southern Baltic Sea (central Pomerania). Baltic Coastal Zone 16, 97–102.
  51. [51] Rychert, K. & Wielgat-Rychert M. (2008). Biodegradable organic master in the coastal waters of Central Pomerania (Ustka) and the Gulf of Gdańsk (Sopot). In E. Bajkiewicz-Grabowska & D. Borowiak (Eds), Anthropogenic and natural transformations of lakes, 2 (pp. 179–182). Gdańsk: KLUG-PTLim Publ.
  52. [52] Samuelsson, K., Berglund J. & Andersson A. (2006). Factors structuring the heterotrophic flagellate and ciliate community along a brackish water primary production gradient. J. Plankton Res. 28, 345–359. http://dx.doi.org/10.1093/plankt/fbi11810.1093/plankt/fbi118
  53. [53] Schweizer, M., Polovodova I., Nikulina A. & Schönfeld J. (2011). Molecular identification of Ammonia and Elphidium species (Foraminifera, Rotaliida) from the Kiel Fjord (SW Baltic Sea) with rDNA sequences. Helgol. Mar. Res. 65, 1–10. http://dx.doi.org/10.1007/s10152-010-0194-310.1007/s10152-010-0194-3
  54. [54] Setälä, O. & Kivi K. (2003). Planktonic ciliates in the Baltic Sea in summer: distribution, species association and estimated grazing impact. Aquat. Microb. Ecol. 32, 287–297. http://dx.doi.org/10.3354/ame03228710.3354/ame032287
  55. [55] Sherr, E. B., Caron D. A. & Sherr B. F. (1993). Staining of heterotrophic protists for visualization via epifluorescence microscopy. In P. F. Kemp, B. F. Sherr, E. B. Sherr & J. J. Cole (Eds.), Handbook of methods in aquatic microbial ecology (pp. 213–227). Boca Raton: Levis Publishers.
  56. [56] Sherr, E. B. & Sherr B. F. (1993). Preservation and storage of samples for enumeration of heterotrophic protists. In P. F. Kemp, B. F. Sherr, E. B. Sherr & J. J. Cole (Eds.), Handbook of methods in aquatic microbial ecology (pp. 207–212). Boca Raton: Levis Publishers.
  57. [57] Sherr, E. B. & Sherr B. F. (1994). Bacterivory and herbivory: key roles of phagotrophic protists in pelagic food webs. Microb. Ecol. 28, 223–235. http://dx.doi.org/10.1007/BF0016681210.1007/BF0016681224186449
  58. [58] Sherr, E. B. & Sherr B. F. (2002). Significance of predation by protists in aquatic microbial food webs. Antonie Leeuwenhoek 81, 293–308. http://dx.doi.org/10.1023/A:102059130726010.1023/A:1020591307260
  59. [59] Šimek, K., Jürgens K., Nedoma J., Comerma M. & Armengol J. (2000). Ecological role and bacterial grazing of Halteria spp.: small freshwater oligotrichs as dominant pelagic ciliate bacterivores. Aquat. Microb. Ecol. 22, 43–56. http://dx.doi.org/10.3354/ame02204310.3354/ame022043
  60. [60] Smetacek, V. (1981). The annual cycle of protozooplankton in the Kiel Bight. Mar. Biol. 63, 1–11. http://dx.doi.org/10.1007/BF0039465710.1007/BF00394657
  61. [61] Strüder-Kypke, M. C. & Montagnes D. J. S. (2002). Development of web-based guides to planktonic protists. Aquat. Microb. Ecol. 27, 203–207. http://dx.doi.org/10.3354/ame02720310.3354/ame027203
  62. [62] Suzuki, T. & Taniguchi A. (1998). Standing crops and vertical distribution of four groups of marine planktonic ciliates in relation to phytoplankton chlorophyll a. Mar. Biol. 132, 375–382. http://dx.doi.org/10.1007/s00227005040410.1007/s002270050404
  63. [63] Suzuki, T., Yamada N. & Taniguchi A. (1998). Standing crops of planktonic ciliates and nanoplankton in oceanic waters of the western Pacific. Aquat. Microb. Ecol. 14, 49–58. http://dx.doi.org/10.3354/ame01404910.3354/ame014049
  64. [64] Thomsen, H. A. (1992). Plankton from inner Danish waters. An analysis of the autotrophic and heterotrophic protists (excl. ciliates) in Kattegat. Havforskning fra Miløstyrelsen, 11, pp. 331. (in Danish)
  65. [65] Urrutxurtu, I., Orive E. & de la Sota A. (2003). Seasonal dynamics of ciliated protozoa and their potential food in an eutrophic estuary (Bay of Biscay). Estuar. Coast. Shelf Sci. 57, 1169–1182. http://dx.doi.org/10.1016/S0272-7714(03)00057-X10.1016/S0272-7714(03)00057-X
  66. [66] Utermöhl, H. (1958). Improving quantitative methods for phytoplankton analyses. Mitt. Int. Ver. Limnol. 9, 1–38. (in German)
  67. [67] van Beusekon, J. E. E., Mengedoht D., Augustin Ch. B., Schilling M. & Boersma M. (2009). Phytoplankton, protozooplankton and nutrient dynamics in the Bornholm Basin (Baltic Sea) in 2002–2003 during the German GLOBEC Project. Int. J. Earth Sci. 98, 251–260. http://dx.doi.org/10.1007/s00531-007-0231-x10.1007/s00531-007-0231-x
  68. [68] Verity, P. G. & Langdon C. (1984). Relationships between lorica volume, carbon, nitrogen, and ATP content of tintinnids in Narragansett Bay. J. Plankton Res. 6, 859–867. http://dx.doi.org/10.1093/plankt/6.5.85910.1093/plankt/6.5.859
  69. [69] Vørs, N. (1992). Heterotrophic amoebae, flagellates and heliozoa from the Tvärminne area, Gulf of Finland, in 1988–1990. Ophelia 36, 1–109. http://dx.doi.org/10.1080/00785326.1992.1042993010.1080/00785326.1992.10429930
  70. [70] Wasik, A. & Mikołajczyk E. (1996). The seasonal distribution of hyaline Helicostomella subulata and agglutinated Tintinnopsis labiancoi — dominants of the Baltic Tintinnina (Ciliophora). Oceanologia 38, 405–418.
  71. [71] Weitere, M. & Arndt H. (2002). Water discharge-regulated bacteria-heterotrophic nanoflagellate (HNF) interactions in the water column of the River Rhine. Microb. Ecol. 44, 19–29. http://dx.doi.org/10.1007/s00248-002-2010-310.1007/s00248-002-2010-312019464
  72. [72] Witek, B. & Pliński M. (2005). The occurrence of dinoflagellates in the phytoplankton of the Gulf of Gdańsk coastal zone in 1994–1997. Oceanol. Hydrobiol. Stud. 2, 63–70.
  73. [73] Witek, M. (1994). Planktonic ciliates of the Gdańsk Basin. Unpublished doctoral dissertation, Sea Fisheries Institute, Gdynia, Poland. (in Polish)
  74. [74] Witek, M. (1998). Annual Changes of Abundance and Biomass of Planktonic Ciliates in the Gdańsk Basin, Southern Baltic. Internat. Rev. Hydrobiol. 83, 163–182. http://dx.doi.org/10.1002/iroh.1998083020710.1002/iroh.19980830207
  75. [75] Witek, Z. (1995). Biological production and its utilization within a marine ecosystem in the western Gdańsk Basin. Gdynia: Sea Fisheries Institute Publ. (in Polish)
  76. [76] Witek, Z., Ochocki S., Maciejowska M., Pastuszak M., Nakonieczny J., Podgórska B., Kownacka J. M., Mackiewicz T. & Wrzesińska-Kwiecień M. (1997). Phytoplankton primary production and its utilization by the pelagic community in the coastal zone of the Gulf of Gdańsk (southern Baltic). Mar. Ecol. Prog. Ser. 148, 169–186. http://dx.doi.org/10.3354/meps14816910.3354/meps148169
  77. [77] Wrzesińska-Kwiecień, M. & Mickiewicz T. (1995). Protozooplankton of the Pomeranian Bay (southern Balic). Bull. Sea Fish. Inst. 136, 89–95.
  78. [78] Yang, E. J., Choi J. K. & Hyun J.-H. (2008). Seasonal variation in the community and size structure of nano- and microzooplankton in Gyeonggi Bay, Yellow Sea. Estuar. Coast. Shelf Sci. 77, 320–330. http://dx.doi.org/10.1016/j.ecss.2007.09.03410.1016/j.ecss.2007.09.034
DOI: https://doi.org/10.2478/s13545-013-0083-x | Journal eISSN: 1897-3191 | Journal ISSN: 1730-413X
Language: English
Page range: 268 - 276
Published on: Oct 3, 2013
Published by: University of Gdańsk
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2013 Krzysztof Rychert, Katarzyna Spich, Kinga Laskus, Michalina Pączkowska, Magdalena Wielgat-Rychert, Gracjan Sojda, published by University of Gdańsk
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.