Have a personal or library account? Click to login
Allelopathic activity of the norharmane-producing cyanobacterium Synechocystis aquatilis against cyanobacteria and microalgae Cover

Allelopathic activity of the norharmane-producing cyanobacterium Synechocystis aquatilis against cyanobacteria and microalgae

By: Zakaria Mohamed  
Open Access
|Apr 2013

References

  1. [1] Al-Shehri, A.M. (2010). Toxin-producing blooms of the cyanobacterium Microcystis aeruginosa in rainwater ponds in Saudi Arabia. Oceanol. Hydrobiol. Stud. 4:173–189.
  2. [2] American Public Health Association (APHA), 1995, Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, DC.
  3. [3] Bais, H.P., Vepachedu R., Gilroy S., Callaway R.M., Vivanco J.M. (2003). Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science 301: 1377–1380. http://dx.doi.org/10.1126/science.108324510.1126/science.108324512958360
  4. [4] Becher, P.G., Beuchat J., Gademann K., Jüttner F. (2005). Nostocarboline: isolation and synthesis of a new cholinesterase inhibitor from Nostoc 78-12A. J. Nat. Prod. 68: 1793–1795. http://dx.doi.org/10.1021/np050312l10.1021/np050312l16378379
  5. [5] Blom, J.F., Brütsch T., Barbaras D., Bethuel Y., Locher H.H., Hubschwerlen C., Gademann K. (2006). Potent algicides based on the cyanobacterial alkaloid nostocarboline. Org. Lett. 8: 737–740. http://dx.doi.org/10.1021/ol052968b10.1021/ol052968b16468755
  6. [6] Churro, C., Alverca E., Sam-Bento F., Paulino S., Figueira V.C., Bento A.J., Prabhakar S., Lobo A.M., Calado A.J., Pereira P. (2009). Effects of bacillamide and newly synthesized derivatives on the growth of cyanobacteria and microalgae cultures. J. Appl. Phycol. 21: 429–442. http://dx.doi.org/10.1007/s10811-008-9388-310.1007/s10811-008-9388-3
  7. [7] Czaran, T.L., Hoekstra R.F., Pagie L. (2002). Chemical warfare between microbes promotes biodiversity. Proc. Natl. Acad. Sci. USA 99:786–790. http://dx.doi.org/10.1073/pnas.01239989910.1073/pnas.01239989911738311792831
  8. [8] Erhard, D. (2006). Allelopathy in aquatic environments. In M.J. Reigosa, N. Pedrol, L. Gonzalez, AA Dordrecht (Eds.) Allelopathy A Physiological Process with Ecological Implications. (pp. 433–450) The Netherlands
  9. [9] Erhard, D., Gross E.M. (2006). Allelopathic activity of Elodea Canadensis and Elodea nuttallii against epiphytes and phytoplankton. Aquat. Bot. 85: 203–211. http://dx.doi.org/10.1016/j.aquabot.2006.04.00210.1016/j.aquabot.2006.04.002
  10. [10] Figueredo, C.C., Giani A, Bird D.F. (2007). Does allelopathy contribute to Cylindrospermopsis raciborskii (Cyanobacteria) bloom occurrence and geographic expansion?. J. Phycol. 43: 256–265. http://dx.doi.org/10.1111/j.1529-8817.2007.00333.x10.1111/j.1529-8817.2007.00333.x
  11. [11] Finney, D.J. (1963). Probit Analysis (rev. ed.) (pp. 165–175) San Diego
  12. [12] Gademann, K. (2007). Cyanobacterial Natural Products for the Inhibition of Biofilm Formation and Biofouling. Chimia 61: 373–377. http://dx.doi.org/10.2533/chimia.2007.37310.2533/chimia.2007.373
  13. [13] Gross, E.M. (2003). Allelopathy in aquatic autotrophs. Crit. Rev. Plant Sci. 22: 313–339. http://dx.doi.org/10.1080/71361085910.1080/713610859
  14. [14] Gumbo, J.R., Ross G., Cloete, T.E. (2010). The isolation and identification of predatory bacteria from a Microcystis algal bloom. Afr. J. Biotechnol. 9: 663–671.
  15. [15] Jaki, B., Heilmann J., Sticher O. (2000). New antibacterial metabolites from the cyanobacterium Nostoc commune (EAWAG 122b). J. Nat. Prod. 63: 1283–1285. http://dx.doi.org/10.1021/np000033s10.1021/np000033s11000038
  16. [16] Jaki, B., Zerbe O., Heilmann J., Sticher O. (2001). Two novel cyclic peptides with antifungal activity from the Cyanobacterium Tolypothrix byssoidea (EAWAG 195). J. Nat. Prod. 63:154–158. http://dx.doi.org/10.1021/np000297e10.1021/np000297e11429991
  17. [17] Jeong, J., Jin H., Sohn C., Suh K., Hong Y. (2000). Algicidal activity of the seaweed Corallina pilulifera against red tide microalgae. J. Appl. Phycol. 12: 37–43. http://dx.doi.org/10.1023/A:100813912905710.1023/A:1008139129057
  18. [18] Kodani, S., Imoto A., Mitsutani A., Murakami M. (2002). Isolation and identification of the antialgal compound, harmane (1-methyl-β-carboline), produced by the algicidal bacterium, Pseudomonas sp. K44-1. J. Appl. Phycol. 14:109–114. http://dx.doi.org/10.1023/A:101953341401810.1023/A:1019533414018
  19. [19] Krebs, C.J. (2000). Ecology: the experimental analysis of distribution and abundance. Benjamin-Cummings Publishing Company 2000 San Francisco, CA: Benjamin-Cummings Publishing Company
  20. [20] Lambers, H., Chapin F.S., Pons T.L. (1998). Plant physiological ecology. Springer-Verlag 1999 Berlin: Springer-Verlag http://dx.doi.org/10.1007/978-1-4757-2855-210.1007/978-1-4757-2855-2
  21. [21] Leflaive, J., Ten-Hage L. (2006). Algal and cyanobacterial secondary metabolites in freshwaters: a comparison of allelopathic compounds and toxins. Freshwater Biol. 52: 199–214. http://dx.doi.org/10.1111/j.1365-2427.2006.01689.x10.1111/j.1365-2427.2006.01689.x
  22. [22] Legrand, C., Rengefors K., Fistarol G.O., Granéli E. (2003). Allelopathy in phytoplankton-biochemical, ecological, and evolutionary aspects. Phycol. 42: 406–419. http://dx.doi.org/10.2216/i0031-8884-42-4-406.110.2216/i0031-8884-42-4-406.1
  23. [23] Macías, F.A., Galindo J.L.G., Garcia-Diaz M.D., Galindo J.C.G. (2007). Allelopathic agents from aquatic ecosystems: potential biopesticides models. Phytochem Rev. 7: 155–178. http://dx.doi.org/10.1007/s11101-007-9065-110.1007/s11101-007-9065-1
  24. [24] Mohamed, Z.A., Al Shehri A.M. (2009). Microcystins in groundwater wells and their accumulation in vegetable plants irrigated with contaminated waters in Saudi Arabia. J. Hazard. Mater. 172: 310–315. http://dx.doi.org/10.1016/j.jhazmat.2009.07.01010.1016/j.jhazmat.2009.07.01019640645
  25. [25] Park, M.H., Han M.S., Ahn C.Y., Kim H.S., Yoon B.D., Oh H.M. (2006a). Growth inhibition of bloom-forming cyanobacterium Microcystis aeruginosa by rice straw extract. Lett. Appl. Microbiol. 43: 307–312. http://dx.doi.org/10.1111/j.1472-765X.2006.01951.x10.1111/j.1472-765X.2006.01951.x16910937
  26. [26] Park, M.H., Hwang S.J., Ahn C.Y., Kim B.H., Oh H.M. (2006b). Screening of seventeen oak extracts for the growth inhibition of the cyanobacterium Microcystis aeruginosa Kutz. em. Elenkin. Bull. Environ. Cont. Toxicol. 77: 9–14. http://dx.doi.org/10.1007/s00128-006-1025-810.1007/s00128-006-1025-816832749
  27. [27] Rastogi, R.P., Sinha R.P. (2009) Biotechnological and industrial significance of cyanobacterial secondary metabolites. Biotechnol. Adv. 27: 521–539. http://dx.doi.org/10.1016/j.biotechadv.2009.04.00910.1016/j.biotechadv.2009.04.009
  28. [28] Rice, E.L. (1984) Allelopathy, 2nd edn. Academic Press, Orlando, (pp. 189–205) 10.1016/B978-0-08-092539-4.50010-1
  29. [29] Smith, G.D., Doan N.T. (1999). Cyanobacterial metabolites with bioactivity against photosynthesis in Cyanobacteria, algae and higher plants. J. Appl. Phycol. 11: 337–344 http://dx.doi.org/10.1023/A:100811581834810.1023/A:1008115818348
  30. [30] Stanier, R. Y. (1977). The position of cyanobacteria in the world of phototrophs. Carlsberg Res. Commun. 42: 77–98. http://dx.doi.org/10.1007/BF0290648710.1007/BF02906487
  31. [31] Takamo, K., Igarashi S., Mikami H., Hino S. (2003). Causation of reversal simultaneity for diatom biomass and density of Phormidium tenue during the warm season in eutrophic Lake Barato, Japan. Limnol. 4: 73–78. http://dx.doi.org/10.1007/s10201-003-0094-110.1007/s10201-003-0094-1
  32. [32] Uronen, P., Kuuppo P., Legrand C., Tamminen T. (2007). Allelopathic Effects of Toxic Haptophyte Prymnesium parvum Lead to Release of Dissolved Organic Carbon and Increase in Bacterial Biomass. Microbial. Ecol. 54: 183–193. http://dx.doi.org/10.1007/s00248-006-9188-810.1007/s00248-006-9188-8
  33. [33] Vardi, A., Schatz D., Beeri K., Motro U., Sukenik A., Levine A., Kaplan A. (2002). Dinoflagellate cyanobacteria communication may determine the composition of phytoplankton assemblage in a mesotrophic lake. Curr. Biol. 12: 1767–1772. http://dx.doi.org/10.1016/S0960-9822(02)01217-410.1016/S0960-9822(02)01217-4
  34. [34] Verschuere, L., Rombaut G., Sorgeloos P., Verstraete W. (2000). Probiotic bacteria as biological control agents in aquaculture. J. Microbiol. Mol. Biol. Rev. 64: 655–671. http://dx.doi.org/10.1128/MMBR.64.4.655-671.200010.1128/MMBR.64.4.655-671.20009900811104813
  35. [35] Vivanco, J.M., Harsh H.P., Bais P., Stermitz F.R., Thelen G.C., Callaway R.M. (2004). Biogeographical variation in community response to root allelochemistry: novel weapons and exotic invasion. Ecol. Lett. 7: 285–292. http://dx.doi.org/10.1111/j.1461-0248.2004.00576.x10.1111/j.1461-0248.2004.00576.x
  36. [36] Volk, R. B. (2008) Screening of microalgae for species excreting norharmane, a manifold biologically active indole alkaloid. Microbiol. Res. 163: 307–313. http://dx.doi.org/10.1016/j.micres.2006.06.00210.1016/j.micres.2006.06.00216872816
  37. [37] Volk, R.B. (2005) Screening of microalgal culture media for the presence of algicidal compounds and isolation and identification of two bioactive metabolites, excreted by the cyanobacteria Nostoc insulare and Nodularia harveyana, respectively. J. Appl. Phycol. 17: 339–34. http://dx.doi.org/10.1007/s10811-005-7292-710.1007/s10811-005-7292-7
  38. [38] Volk, R.B. (2006). Antialgal activity of several cyanobacterial exometabolites. J. Appl. Phycol. 18: 145–151. http://dx.doi.org/10.1007/s10811-006-9085-z10.1007/s10811-006-9085-z
  39. [39] Volk, R.B. (2007). Studies on culture age versus exometabolite production in batch cultures of the cyanobacterium Nostoc insulare. J. Appl. Phycol. 19: 491–495. http://dx.doi.org/10.1007/s10811-007-9161-z10.1007/s10811-007-9161-z
  40. [40] Volk, R.B., Furkert F.H. (2006). Antialgal, antibacterial and antifungal activity of two metabolites produced and excreted by cyanobacteria during growth. Microbiol. Res. 161: 180–186. http://dx.doi.org/10.1016/j.micres.2005.08.00510.1016/j.micres.2005.08.00516427523
  41. [41] Volk, R.B., Mundt S. (2006). Cytotoxic and non-cytotoxic exometabolites of the cyanobacterium Nostoc insulare. J. Appl. Phycol. 17: 339–347. http://dx.doi.org/10.1007/s10811-005-7292-710.1007/s10811-005-7292-7
DOI: https://doi.org/10.2478/s13545-013-0053-3 | Journal eISSN: 1897-3191 | Journal ISSN: 1730-413X
Language: English
Page range: 1 - 7
Published on: Apr 12, 2013
Published by: University of Gdańsk
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2013 Zakaria Mohamed, published by University of Gdańsk
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.