Have a personal or library account? Click to login
Sulfur in the marine environment Cover

References

  1. [1] Andreae M.O., Jaeschke W.A., 1992, Exchange of sulphur between biosphere and atmosphere over temperate and tropical regions [in:] Sulphur cycling on the Continents: Wetlands, Terrestrial Ecosystems, and Associated Water Bodies, SCOPE 48, Ed. Howarth R W., Chichester, John Wiley & Sons, pp. 27–61
  2. [2] Abdollahi H., Wimpenny J., 1990, Effects of oxygen on the growth of Desulfovibrio desulfuricans, J. Gen. Microbiol., 136(6): 1025–1030, DOI: 10.1099/002 21287-136-6-1025
  3. [3] Anderson E.F., Wilson D.J., 2000, A simple field test for acid volatile sulfide in sediments, J. Tennessee. Acad. Sci. 75(3–4): 53–56, http://www.highbeam.com/doc/1G1-78398540.html
  4. [4] Andrews J.E., Brimblecombe P., Jickells T.D., Liss P.S., 2000, An Introduction to Environmental Chemistry, Warszawa, Scientific and Technical Press, pp. 234 (in Polish)
  5. [5] Azad Md.A.K., Ohira S.-I., Oda M., Toda K., 2005, On-site measurements of hydrogen sufide and sulfur dioxide emissions from tidal flat sediments of Ariake Sea, Japan, Atmos. Environ., 39(33): 6077–6087, DOI:10.1016/j.atmosenv.2005.06.042 http://dx.doi.org/10.1016/j.atmosenv.2005.06.04210.1016/j.atmosenv.2005.06.042
  6. [6] Bates T.S., Charlson R.J., Gammon R.H., 1987, Evidence for the climatic role of marine biogenic sulphur, Nature, 329: 319–321 http://dx.doi.org/10.1038/329319a010.1038/329319a0
  7. [7] Battersby N.S., 1988, Sulphate-reducting bacteria [in:] Methods on aquatic bacteriology, Ed. Austin B., Chichester, John Wiley & Sons, pp. 269–299
  8. [8] Berner R.A., 1984, Sedimentary pyrite formation: An update, Geochim. et Cosmochim. Acta, 48(4): 605–615, DOI: 10.1016/0016-7037(84)90089-9 http://dx.doi.org/10.1016/0016-7037(84)90089-910.1016/0016-7037(84)90089-9
  9. [9] Berner R.A., Raiswell R., 1983, Burial of organic-carbon and pyrite sulfur in sediments over phanerozoic time-a new theory, Geochim. et Cosmochim. Acta, 47(5): 855–862, DOI: 10.1016/0016-7037(83)90151-5 http://dx.doi.org/10.1016/0016-7037(83)90151-510.1016/0016-7037(83)90151-5
  10. [10] Bitton G., 2005, Wastewater microbiology, New Jersey, John Wiley and Sons, pp. 749 http://dx.doi.org/10.1002/047171796710.1002/0471717967
  11. [11] Boon A.G., Vincent A.J., 2003, Odour generation and control [in:] The handbook of water and wastewater microbiology, Eds. Mara D., Horan N.J., San Diego, Academic Press, pp. 545–557 http://dx.doi.org/10.1016/B978-012470100-7/50034-010.1016/B978-012470100-7/50034-0
  12. [12] Borówka R.K., Cedro B., 2001, Skarby Ziemi: Co kryje Ziemia, Poznań, KURPISZ, pp. 239, (in Polish)
  13. [13] Bottrell S.H., Newton R.J., 2006, Reconstruction of changes in global sulfur cycling from marine sulfate isotopes, Earth-Sci. Rev., 75(1–4): 59–83, DOI: 10.1016/j.earscirev.2005.10.004 http://dx.doi.org/10.1016/j.earscirev.2005.10.00410.1016/j.earscirev.2005.10.004
  14. [14] Böttcher M.E., Thamdrup B., Vennemann T.W., 2001, Oxygen and sulfur isotope fractionation during anaerobic bacterial disproportionation of elemental sulfur, Geochim. et Cosmochim. Acta, 65(10): 1601–1609, DOI: 10.1016/S0016-7037(00)00628-1 http://dx.doi.org/10.1016/S0016-7037(00)00628-110.1016/S0016-7037(00)00628-1
  15. [15] Brouwer H., Murphy T., 1995, Volatile sulfides and their toxicity in freshwater sediments, Envir. Toxicol. Chem., 14(2): 203–208, DOI: 10.1897/1552-8618(1995)14[203:VSATTI]2.0.CO;2 http://dx.doi.org/10.1002/etc.562014020410.1002/etc.5620140204
  16. [16] Brüchert V., 1998, Early diagenesis of sulfur in estuarine sediments: The role of sedimentary humic and fulvic acids, Geochim. et Cosmochim. Acta, 62(9): 1567–1586, DOI: 10.1016/S0016-7037(98)00089-1 http://dx.doi.org/10.1016/S0016-7037(98)00089-110.1016/S0016-7037(98)00089-1
  17. [17] Brüchert V., Pratt L.M., 1996, Contemporaneous early diagenetic formation of organic and inorganic sulfur in estuarine sediments from St. Andrew Bay, Florida, USA, Geochim. et Cosmochim. Acta, 60(13): 2325–2332, DOI: 10.1016/0016-7037(96)00087-7 http://dx.doi.org/10.1016/0016-7037(96)00087-710.1016/0016-7037(96)00087-7
  18. [18] Brüchert V., Jørgensen B.B., Neumann K., Riechmann D., Schlösser M., Schulz H., 2003, Regulation of bacterial sulfate reduction and hydrogen sulfide fluxes in the central Namibian coastal upwelling zone, Geochim. et Cosmochim. Acta, 67(23): 4505–4518, DOI: 10.1016/S0016-7037(03)00275-8 http://dx.doi.org/10.1016/S0016-7037(03)00275-810.1016/S0016-7037(03)00275-8
  19. [19] Butler I.B., Böttcher M.E., Rickard D., Oldroyd A., 2004, Sulfur isotope partitioning during experimental formation of pyrite via the polysulfide and hydrogen sulfide pathways: implications for the interpretation of sedimentary and hydrothermal pyrite isotope records, Earth Planet. Sci. Lett., 228(3–4): 495–509, DOI: 10.1016/j.epsl.2004.10.005 http://dx.doi.org/10.1016/j.epsl.2004.10.00510.1016/j.epsl.2004.10.005
  20. [20] Canfield D.E., Jørgensen B.B., Fossing H., Glud R., Gundersen N.B. et al., 1993, Pathways of organic carbon oxidation in three continental margin sediments, Mar. Geol., 113(1–2): 27–40 http://dx.doi.org/10.1016/0025-3227(93)90147-N10.1016/0025-3227(93)90147-N
  21. [21] De Graaf W., Sinninghe Damsté J. S., De Leeuw J.W., 1992, Laboratory simulation of natural sulphurization: I. Formation of monomeric and oligomeric isoprenoid polysulphides by low-termperature reactions of inorganic polysulphides with phytol and phytadienes, Geochim. et Cosmochim. Acta, 56(12): 4321–4328, DOI: 10.1016/0016-7037(92)90275-N http://dx.doi.org/10.1016/0016-7037(92)90275-N10.1016/0016-7037(92)90275-N
  22. [22] Deming J.W., Baross J.A., 1993, The early diagenesis of organic matter: bacterial activity [in:] Organic geochemistry: Principles and Applications, Eds. M.H. Engel, S.A. Macko, New York, Plenum Press, pp. 119–144 http://dx.doi.org/10.1007/978-1-4615-2890-6_510.1007/978-1-4615-2890-6_5
  23. [23] Derda M., 1999, Sulfur isotopes in nature. Determination of sulfur isotope ratios in coal and petroleum by gas combustion, INCT Reports Series B, 6(99), Warszawa, Institute of Nuclear Chemistry and Technology, pp. 20 (in Polish)
  24. [24] Di Toro D.M., Mahony J.D., Hansen D.J., Scott K.J., Hicks M.B. et al., 1990, Toxicity of cadmium in sediments: the role of acid-volatile sulfide, Environ. Toxicol. Chem., 9(12): 1487–1502, DOI: 10.1897/1552-8618(1990)9[1487:TOCIST]2.0.CO;2 http://dx.doi.org/10.1002/etc.562009120810.1002/etc.5620091208
  25. [25] Donahue M.A., Werne J.P., Meile Ch., Lyons T., 2008, Modeling isotope fractionation and differential diffusion during sulfate reduction in sediments of the Cariaco Basin, Geochim. et Cosmochim. Acta, 72(9): 2287–2297, DOI: 10.1016/j.gca.2008.02.020 http://dx.doi.org/10.1016/j.gca.2008.02.02010.1016/j.gca.2008.02.020
  26. [26] EPA, 1994, Chemicals in the environment: OPPT Chemical Fact Sheets: Carbonyl sulfide (CAS 463-58-1), http://www.epa.gov/chemfact/
  27. [27] Falkowska L., Korzeniewski K., 1995, Chemia atmosfery, Gdańsk, The University of Gdańsk Press, pp. 193 (in Polish)
  28. [28] Ferek R.J., Andreae M.O., 1984, Photochemical production of carbonyl sulphide in marine surface waters, Nature, 307: 148–150, DOI: 10.1038/307148a0 http://dx.doi.org/10.1038/307148a010.1038/307148a0
  29. [29] Fossing H., Gallardo V.A., Jørgensen B.B., Hüttel M., Nielsen L.P. et al., 1995, Concentration and transport of nitrate by the mat-forming sulphur bacterium Thioploca, Nature, 374: 713–715, DOI: 10.1038/374713a0 http://dx.doi.org/10.1038/374713a010.1038/374713a0
  30. [30] Froelich P.N., Klinkhammer G.P., Bender M.L., Luedtke N.A., Heath G.R., 1979, Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: Suboxic diagenesis, Geochim. et Cosmochim. Acta, 43(7): 1075–1090, DOI: 10.1016/0016-7037(79)90095-4 http://dx.doi.org/10.1016/0016-7037(79)90095-410.1016/0016-7037(79)90095-4
  31. [31] Gagnon C., Mucci A., Pelletier E., 1996, Vertical distribution of dissolved sulphur species in coastal marine sediments, Mar. Chem., 52(3–4): 195–209, DOI: 10.1016/0304-4203(95)00099-2 http://dx.doi.org/10.1016/0304-4203(95)00099-210.1016/0304-4203(95)00099-2
  32. [32] Gao Y., Schofield O.M.E., Leustek T., 2000, Characterization of sulfate assimilation in marine algae focusing on the enzyme 5′-adenylylsulfate reductase, J. Plant Physiol., 123: 1087–1096 http://dx.doi.org/10.1104/pp.123.3.108710.1104/pp.123.3.1087
  33. [33] George J., Purushothaman C.S., Shouche Y.S., 2008, Isolation and characterization of sulphate-reducting bacteria Desulfovibrio vulgaris from Vajreshwari thermal springs in Maharashtra, India, World J. Microb. Biot., 24(5): 681–685, DOI: 10.1007/s11274-007-9524-2 http://dx.doi.org/10.1007/s11274-007-9524-210.1007/s11274-007-9524-2
  34. [34] Grasby S.E., Allen C.C., Longazo T.G., Lisle J.T., Griffin D.W., Beauchamp B., 2003, Biogeochemical sulphur cycle in an extreme environment — life beneath a high arctic glacier, Nunavut, Canada, J. Geochem. Explor., 78–79: 71–74, DOI: 10.1016/S0375-6742(03)00026-8 http://dx.doi.org/10.1016/S0375-6742(03)00026-810.1016/S0375-6742(03)00026-8
  35. [35] Holser W.T., Mackenzie F.T., Maynard J.B., Schidlowski M., 1988, Geochemical cycles of carbon and sulfur [in:] Chemical cycles in the evolution of the earth, Ed. Gregor C.B., New York, Wiley-Interscience, pp. 105–173
  36. [36] Iverson R.L., Nearhoof F.L., Andreae M.O., 1989, Production of dimethylsulfonium propionate and dimethylsulfide by phytoplankton in estuarine and coastal waters, Limnol. Oceanogr., 34: 53–67 http://dx.doi.org/10.4319/lo.1989.34.1.005310.4319/lo.1989.34.1.0053
  37. [37] Janas U., 1998, Wpływ niedoboru tlenu i obecności siarkowodoru na makrozoobentos Zatoki Gdańskiej, PhD thesis, University of Gdańsk, Gdynia, pp. 155 (in Polish)
  38. [38] Jørgensen B.B., 1977, The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark), Limnol. Oceanogr., 22(5): 814–832 http://dx.doi.org/10.4319/lo.1977.22.5.081410.4319/lo.1977.22.5.0814
  39. [39] Jørgensen B.B., 1982, Mineralization of organic matter in the sea bed — the role of sulphate reduction, Nature, 296: 643–645, DOI: 10.1038/296643a0 http://dx.doi.org/10.1038/296643a010.1038/296643a0
  40. [40] Kamyshny A., Goifman A., Rizkov D., Lev O., 2003, Formation of carbonyl sulfide by the reaction of carbon monoxide and inorganic polysulfides, Environ. Sci. Techol., 37(9): 1865–1872, DOI: 10.1021/es0201911 http://dx.doi.org/10.1021/es020191110.1021/es020191112775059
  41. [41] Keith S.M., Herbert R.A., Harfoot C.G., 1982, Isolation of new types of sulphate-reducing bacteria from estuarine and marine sediments using chemostat enrichments, J. Appl. Microbiol., 53: 29–33, DOI: 10.1111/j.1365-2672.1982.tb04731.x http://dx.doi.org/10.1111/j.1365-2672.1982.tb04731.x10.1111/j.1365-2672.1982.tb04731.x
  42. [42] Kettle, A.J., Andreae M.O., Amouroux D., Andreae T.W., Bates T.S. et. al., 1999, A global data base of sea surface dimethyl sulfide (DMS) measurements and a simple model to predict sea surface DMS as a function of latitude, longitude, and month, Global Biogeochem. Cy. 13(2): 399–444, DOI: 10.1029/1999GB900004 http://dx.doi.org/10.1029/1999GB90000410.1029/1999GB900004
  43. [43] Kholodov V.N., 2002, The role of H 2S — contaminated basins in sedimentary ore formation, Limnology and Mineral Resources, 37(5): 393–411, DOI: 10.1023/A:1020251314915 http://dx.doi.org/10.1023/A:102025131491510.1023/A:1020251314915
  44. [44] Kohnen M.E.L., Jaap S., Damsté S.S., Kock-Van Dalen A.C., De Leeuw J.W., 1991, Di- or polysulphide — bound biomarkers in sulphur — rich geomacromolecules as revealed by selective chemolysis, Geochim. et Cosmochim. Acta, 55(5): 1375–1394, DOI: 10.1016/0016-7037(91)90315-V http://dx.doi.org/10.1016/0016-7037(91)90315-V10.1016/0016-7037(91)90315-V
  45. [45] Korzeniewski K., 1995, Podstawy oceanografii chemicznej, Gdańsk, University of Gdańsk Press, pp. 200 (in Polish)
  46. [46] Kuenen J.G., 1975, Colourless sulfur bacteria and their role in the sulfur cycle, Plant Soil, 43(1–3): 49–76, DOI: 10.1007/BF01928476 http://dx.doi.org/10.1007/BF0192847610.1007/BF01928476
  47. [47] Levine, J. S., 1989, Photochemistry of biogenic gases [in:] Global Ecology: Towards a Science of the Biosphere, Eds. Rambler M.B., Margulis L., Fester L.R., London, Academic Press, pp. 51–74
  48. [48] Lin S., Huang K.-M., Chen S.-K., 2000, Organic carbon deposition and its control on iron sulfide formation of the southern East China Sea continental shelf sediments, Cont. Shelf Res., 20(4–5): 619–635, DOI:10.1016/S0278-4343(99)00088-6 http://dx.doi.org/10.1016/S0278-4343(99)00088-610.1016/S0278-4343(99)00088-6
  49. [49] Lin S., Huang K.-M., Chen S.-K., 2002, Sulfate reduction and iron sulfide mineral formation in the southern East China Sea continental slope sediment, Deep Sea Res. Part I, 49(10): 1837–1852, DOI: 10.1016/S0967-0637(02)00092-4 http://dx.doi.org/10.1016/S0967-0637(02)00092-410.1016/S0967-0637(02)00092-4
  50. [50] Lojen S., Ogrinc N., Dolenec T., Vokal B., Szran J. et al., 2004, Nutrient fluxes and sulfur cycling in the organic-rich sediment of Makirina Bay (Central Dalmatia, Croatia), Sci. Tot. Environ., 327(1–3): 265–284, DOI: 10.1016/j.scitotenv.2004.01.011 http://dx.doi.org/10.1016/j.scitotenv.2004.01.01110.1016/j.scitotenv.2004.01.011
  51. [51] Lyons T.W., Werne J.P., Hollander D.J., Murray R.W., 2003, Contrasting sulfur geochemistry and Fe/Al and Mo/Al ratios across the last oxic-to-anoxic transition in the Cariaco Basin, Venezuela, Chem. Geol., 195(1–4): 131–157, DOI:10.1016/S0009-2541(02)00392-3 http://dx.doi.org/10.1016/S0009-2541(02)00392-310.1016/S0009-2541(02)00392-3
  52. [52] Malin G., 2006, New pieces for the marine sulfur cycle jigsaw, Science, 314(5799): 607–608, DOI: 10.1126/science.1133279 http://dx.doi.org/10.1126/science.113327910.1126/science.1133279
  53. [53] McKay J.L., Longstaffe F.J., 2003, Sulphur isotope geochemistry of pyrite from the Upper Cretaceous Marshybank Formation, Western Interior Basin, Sediment. Geol. 157(3–4): 175–195, DOI: 10.1016/S0037-0738(02)00233-6 http://dx.doi.org/10.1016/S0037-0738(02)00233-610.1016/S0037-0738(02)00233-6
  54. [54] Migdisov A.A., Ronov A.B., Grinenko V.A., 1983, The sulphur cycle in the lithosphere: Part 1. Reservois [in:] The global geochemical sulphur cycle, Eds. Ivanow M.V., Freney J.R., New York, Wiley, pp. 25–95
  55. [55] Mudryk Z.J., Podgórska B., Ameryk A., Bola’ek J., 2000, The occurrence and activity of sulphate-reducing bacteria in the bottom sediments of the Gulf of Gdańsk, Oceanologia, 42(1): 105–117
  56. [56] Neumann T., Rausch N., Leipe T., Dellwig O., Berner Z., Böttcher M.E., 2005, Intense pyrite formation under low-sulfate conditions in the Achterwasser lagoon, SW Baltic Sea, Geochim. et Cosmochim. Acta, 69(14): 3619–3630, DOI: 10.1016/j.gca.2005.02.034 http://dx.doi.org/10.1016/j.gca.2005.02.03410.1016/j.gca.2005.02.034
  57. [57] Norris, K.B., 2003. Dimethylsulfide emission: Climate control by marine algae?, Aquatic Sciences and Fisheries Abstracts, http://www.csa.com/discoveryguides/dimethyl/overview.php
  58. [58] Nyström M., Ruohomäki K., Kaipia L., 1996, Humic acid as a fouling agent in filtration, Desalination, 106(1–3): 79–87, DOI: 10.1016/S0011-9164(96)00095-1 10.1016/S0011-9164(96)00095-1
  59. [59] Ober J.A., 2010, Sulfur(Advance Release) [in:] Minerals Yearbook 2008: Vol.1 Metals & Minerals, US Geological Survey, 74: 1–17, http://minerals.usgs.gov/
  60. [60] Parkes R. J., Gibson G.R., Mueller-Harvey I., Buckingham W. J., Herbert R.A., 1989, Determination of the substrates for sulphate-reducing bacteria within marine and estuarine sediments with different rates of sulphate reduction, J. Gen. Microbiol., 135: 175–187, DOI: 10.1099/00221287-135-1-175 10.1099/00221287-135-1-175
  61. [61] Pempkowiak J., 1997, Zarys geochemii morskiej, Gdańsk, University of Gdańsk Press, pp. 171 (in Polish)
  62. [62] Pham M., Müller J.-F., Brasseur G.P., Granier C., Mégie G., 1996, A 3D model study of the global sulphur cycle: contributions of anthropogenic and biogenic sources, Atmos. Environ. 30(10–11): 1815–1822, DOI: 10.1016/1352-2310(95)00390-8 http://dx.doi.org/10.1016/1352-2310(95)00390-810.1016/1352-2310(95)00390-8
  63. [63] Pronk J.T., Liem K., Bos P., Kuenen J.G., 1991, Energy transduction by anaerobic ferric iron respiration in Thiobacillus ferrooxidans, Appl. Environ. Microbiol. 57(7): 2063–2068 10.1128/aem.57.7.2063-2068.1991
  64. [64] Rickard, D., 1997, Kinetics of pyrite formation by the H 2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125°C: The rate equation, Geochim. et Cosmochim. Acta, 61(1): 115–134, DOI:10.1016/S00167037(96) 00321-3 http://dx.doi.org/10.1016/S0016-7037(96)00321-310.1016/S0016-7037(96)00321-3
  65. [65] Rickard D., Morse J.W., 2005, Acid volatile sulfide (AVS), Marine Chemistry 97(3–4): 141–197, DOI: 10.1016/j.marchem.2005.08.004 http://dx.doi.org/10.1016/j.marchem.2005.08.00410.1016/j.marchem.2005.08.004
  66. [66] Schenau S.J., Passier H.F., Reichart G.J., De Lange G.J., 2002, Sedimentary pyrite formation in the Arabian Sea, Mar. Geol., 185(3–4): 393–402 http://dx.doi.org/10.1016/S0025-3227(02)00183-410.1016/S0025-3227(02)00183-4
  67. [67] Schippers A., Jørgensen B.B., 2002, Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments, Geochim. et Cosmochim. Acta, 66(1): 85–92, DOI: 10.1016/S0016-7037(01)00745-1 http://dx.doi.org/10.1016/S0016-7037(01)00745-110.1016/S0016-7037(01)00745-1
  68. [68] Schlegel H.G., 2003, Mikrobiologia ogólna, Warszawa, Polish Scientific Publishers PWN, pp. 735 (in Polish)
  69. [69] SCOPE, 1993, Effects of increased ultraviolet radiation on global ecosystems: proceedings of a workshop arranged by the Scientific Committee on Problems of the Environment (SCOPE) with the financial support of the CEC, UNEP, US EPA, the Barbara Gauntlett Foundation, and the US NSF: a research implementation plan addressing the impacts of increased UV-B radiation due to stratospheric ozone depletion on global ecosystems, Tramariglio, (Sassari) Sardinia, Paris, SCOPE, pp. 47
  70. [70] Sievert S.M., Kiene R.P., Schulz-Vogt H.N., 2007, The sulfur cycle, Oceanography, 20: 117–123 http://dx.doi.org/10.5670/oceanog.2007.5510.5670/oceanog.2007.55
  71. [71] Suits N.S., Arthur M.A., 2000, Sulfur diagenesis and partitioning in Holocene Peru shelf and upper slope sediments, Chem. Geol., 163: 219–234, DOI: 10.1016/S0009-2541(99)00114-X http://dx.doi.org/10.1016/S0009-2541(99)00114-X10.1016/S0009-2541(99)00114-X
  72. [72] Šukytė V.J., Rinkevičienė E., Zelionkaitė V., 2002, The chemistry of sulfur in anoxic zones of the Baltic Sea, Environmental Research, Engineering and Management, 3(21): 55–60
  73. [73] Thamdrup B., Fossing H., Jørgensen B.B., 1994, Manganese, iron and sulfur cycling in a coastal marine sediment (Aarhus Bay, Denmark), Geochim. et Cosmochim. Acta, 58(23): 5115–5129, DOI: 10.1016/0016-7037(94)90298-4 http://dx.doi.org/10.1016/0016-7037(94)90298-410.1016/0016-7037(94)90298-4
  74. [74] Uher G., 2006, Distribution and air — sea exchange of reduced sulphur gases in European coastal waters, Estuarine Coastal Shelf Sci., 70(3): 338–360, DOI: 10.1016/j.ecss.2006.05.050 http://dx.doi.org/10.1016/j.ecss.2006.05.05010.1016/j.ecss.2006.05.050
  75. [75] Uher G., Andreae M.O., 1997, Photochemical production of carbonyl sulfide in North Sea water: A process study, Limnol. Oceanogr., 42(3): 432–442 http://dx.doi.org/10.4319/lo.1997.42.3.043210.4319/lo.1997.42.3.0432
  76. [76] Ulshöfer V.S., Andreae M.O., 1997, Carbonyl sulfide (COS) in the surface ocean and the atmospheric COS budget, Aquat. Geochem., 3(4): 283–303, DOI: 10.1023/A:1009668400667 http://dx.doi.org/10.1023/A:100966840066710.1023/A:1009668400667
  77. [77] Walker J.C., 1986, Global geochemical cycles of carbon, sulfur and oxygen, Mar. Geol., 70: 159–174, DOI: 10.1016/0025-3227(86)90093-9 http://dx.doi.org/10.1016/0025-3227(86)90093-910.1016/0025-3227(86)90093-9
  78. [78] Weiner J., 2003, Życie i ewolucja biosfery, Warszawa, Polish Scientific Publishers PWN, pp. 609 (in Polish)
  79. [79] Wijsman J.W.M., Middelburg J.J., Herman P.M.J., Böttcher M.E., Heip C.H.R., 2001, Sulfur and iron speciation in surface sediments along the northwestern margin of the Black Sea, Mar. Chem., 74(4): 261–278, DOI: 10.1016/S0304-4203(01)00019-6 http://dx.doi.org/10.1016/S0304-4203(01)00019-610.1016/S0304-4203(01)00019-6
  80. [80] Wilkin, R.T., Barnes, H.L., Brantley, S.L., 1996, The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions. Geochim. et Cosmochim. Acta, 60(20): 3897–3912, DOI: 10.1016/0016-7037(96)00209-8 http://dx.doi.org/10.1016/0016-7037(96)00209-810.1016/0016-7037(96)00209-8
  81. [81] Vismann B., 1996, Sulfide species and total sulfide toxicity in the shrimp Crangon crangon, J. Exp. Mar. Biol. Ecol., 204(1–2): 141–154, DOI: 10.1016/0022-0981(96)02577-4 http://dx.doi.org/10.1016/0022-0981(96)02577-410.1016/0022-0981(96)02577-4
  82. [82] Zago C., Giblin A.E., 1994, Analysis of acid volatile sulfide and metals to predict the toxicity of Boston Harbor sediments, The Biological Bulletin, 187: 290–291 10.1086/BBLv187n2p29029281374
DOI: https://doi.org/10.2478/s13545-012-0019-x | Journal eISSN: 1897-3191 | Journal ISSN: 1730-413X
Language: English
Page range: 72 - 82
Published on: Apr 19, 2012
Published by: University of Gdańsk
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2012 Anita Jasińska, Dorota Burska, Jerzy Bolałek, published by University of Gdańsk
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.